
SIMULATION AND CONTROL OF REACTIVE SYSTEMSPawel GburzynskiDepartment of Computing ScienceUniversity of AlbertaEdmonton, Alberta, CANADA T6G 2H1 Jacek MaitanTools For Sensor, Inc.513 Marshall AvenueCarmichael, CA 95608, U.S.A.ABSTRACTWe introduce SIDE (the acronym stands for SensorsIn a Distributed Environment)|a software packagefor developing control programs for reactive systems.One distinctive feature of SIDE is that it can be usedas a simulator: some (or even all) components of theunderlying physical network can be virtual. Notably,the control program itself need not be aware thatsome parts of its environment are not real. SIDEapplications can be naturally distributed and inter-connected via the Internet.1 INTRODUCTIONThese days people start doing remotely many thingsthat traditionally have required their physical pres-ence at the processing site, e.g., shopping, banking,conferencing, learning. There is no reason why re-mote supervision/coordination of manufacturing pro-cesses should be excluded from the list. To implementthis idea, we have to change our attitudes toward theorganization and interface of control networks. First,instead of being based on obscure and \internal" pro-tocols incompatible with anything used outside, suchnetworks should be naturally connectible to the Inter-net. Second, control programs driving these networksshould be expressed in a friendly common languageproviding a unifying platform for interoperability, ac-cessibility, and understanding. These postulates arenow �nding their way into industrial reactive net-works (see IEEE P1451.1/D83, 1996).The software package presented in this paper of-fers a number of tools aimed at ful�lling the postu-lates mentioned above. Interestingly, SIDE is a directdescendant of a network simulator (Dobosiewicz andGburzynski 1993, Gburzynski 1996), to the point ofretaining all the simulation features of its predecessor.Speci�cally, SIDE o�ers:� A programming language for describing network

con�gurations and specifying distributed pro-grams organized into event-driven threads.� A kernel for executing programs expressed in thelanguage of SIDE.� A Java interface (the DSD applet) that can beused to monitor the execution of a SIDE programfrom the Internet.� A TCP/IP daemon interfacing physical networksof sensors and actuators to the Internet. Thisway such networks become visible to the SIDEkernel.The SIDE kernel has two modes of operation. Inthe real mode, the events perceived and triggered bythe threads (SIDE processes) occur in actual time(usually some of them are triggered by real sensorsand some of them a�ect the behavior of real actu-ators). In the virtual mode (which is only possibleif the entire environment of the control program ismodeled), the time is virtual and the control programbehaves as an event-driven, discrete-time simulator.2 THE STRUCTURE OF SIDE2.1 Control and SimulationFor the purpose of simulation, the source programin SIDE is logically divided into three parts. Theprotocol part represents the dynamics of the modeledsystem. The network part is a logical description ofthe hardware on which the protocol program is ex-pected to run. Finally, the tra�c part describes theload of the modeled system, i.e., the events arrivingfrom outside and their timing.The terms \protocol" and \tra�c" re
ect the factthat the primary application of SIDE's predeces-sor was simulating communication networks (e.g.,see Bertan 1989, Dobosiewicz and Gburzynski 1992,Gburzynski 1996, Molle, 1994). However, it still



makes sense to call a control program driving a net-work of sensors and actuators a protocol, because, ow-ing to its reactive nature, such a program looks likea set of rules prescribing actions to be taken uponsome speci�c events that may be coming from severaldi�erent (and distant) sources. Similarly, it makessense to talk about the input tra�c in a (simulated)fragment of a reactive system, because such a systemtypically handles some objects arriving from outside,and it is natural to represent such objects as struc-tured packets.For the purpose of developing control programs inSIDE, we adopt a slightly more elaborate view ofthe source program (Figure 1). The protocol con-sists now of two parts: the control program properand the simulator for the virtual components of thedriven system. Similarly, the network part is splitinto the so-called network map, i.e., the mapping oflogical sensors and actuators perceived by the controlprogram onto their real (or simulated) counterparts,and the description of the modeled fragments of theunderlying hardware, i.e., the hardware used by thesimulator part of the protocol. The tra�c speci�ca-tion only applies to the simulated part of the envi-ronment (real fragments handle real tra�c that neednot be speci�ed).
CONTROL
PROGRAM

SIMULATOR

SIMULATED
HARDWARE

TRAFFIC

PROTOCOL

NETWORK

PART

SIMULATION
PART

CONTROL

NETWORK MAPFigure 1: A Control System in SIDE.With the above view, one can separate the softwarecomponents that belong to the control system fromthose belonging to the simulator. Thus, \control pro-gram" + \network map" comprise the actual controlsystem (this part represents the target of the devel-opment process, with the network map interpretedas a parameterization of the control program), whilethe remaining components will tend to vanish, untilthey ultimately disappear altogether in the completeversion of the system.

2.2 Network InterfaceA reactive system is de�ned as a collection of sensorsand actuators. These two objects are very similar; infact they are both described by the same data struc-ture with the following layout:mailbox Sensor {private:int Value;void mapNet ();public:NetAddress Reference;void setValue (int);int getValue ();void setup (NetAddress&);};mailbox Actuator : Sensor { };The base type of Sensor and Actuator is Mailbox,which is one of the fundamental built-in datatypes in SIDE. The only relevant attribute of aSensor/Actuator is its Value. For a sensor, thevalue represents the sensor's perception of its environ-ment. The sensor mailbox triggers an event wheneverits Value changes. For an actuator, the value de-scribes the action to be performed by the actuator.By changing the Value attribute of the actuator weforce it to carry out a speci�c physical operation.The setup method plays the role of a construc-tor. Its argument speci�es the sensor's coordinatesin the controlled network. These coordinates may beinterpreted as an actual network address (if the sen-sor/actuator has a physical counterpart), or they maybe used to identify the object's model in a simulatedfragment of the system. This mapping is carried outby method mapNet whose implementation belongs tothe network map portion of the protocol program.The actual mapping of a logical sensor/actuatorinto its real physical counterpart consists of two steps.The lower-level portion of this mapping is carried outby a daemon that interfaces a physical network of sen-sors/actuators to the Internet. The daemon acts asa server intercepting all status change events in thesensor network and transforming them into TCP/IPpackets sent to the clients. Similarly, it receives statuschange requests from its Internet clients and trans-forms them into new values of actuators. The sec-ond level of mapping is performed by the networkmap portion of the protocol program in SIDE. Thispart is in fact optional, but highly recommended.Technically, its is possible to implement setValueand getValue in such a way that their functionscorrespond directly to daemon requests. It makesbetter sense, however, to keep these functions sim-ple and generic, and impose one more level of soft-



ware mapping. For example, the same logical sen-sor/actuator may be mapped di�erently in di�erentversions of the control program (e.g., it may be sim-ulated in some versions or mapped to a physical sen-sor/actuator in others). Another advantage of the ex-tra level of mapping is the 
exibility of being able tomap one logical sensor/actuator into multiple physi-cal sensors/actuators and vice versa. This way thesame control program may be easily \recycled" inenvironments slightly di�erent from the target one,which makes it easier to follow the pattern approachin its design (Gamma et al. 1994).A control program in SIDE can be implementedas a single (multi-threaded) program, or as a set ofembedded programs (Edwards et al. 1997, Paulin etal. 1997) run on independent (possibly diverse) ma-chines connected via a network. These modules cancommunicate with operators (human supervisors) onother machines via standard Internet browsers capa-ble of running Java applets.3 THE PROGRAMMING LANGUAGE3.1 Program ComponentsTypically, a program in SIDE consists of a numberof source �les. The basic unit of execution is calleda process and it looks like a speci�cation of a �nitestate machine. A process always runs in the con-text of some station, which conceptually represents alogical component of the controlled/modeled system.One process (Kernel) and one station (SYSTEM) areprede�ned and exist throughout the entire lifetime ofthe program. All other stations and processes mustbe declared and created by the program. One userprocess, called Root, is run by the kernel automati-cally; its role can be compared to the role of main ina C (or C++) program.Besides processes and stations, SIDE o�ers a vari-ety of built-in types, including tools for creating mod-els of network channels (types Link and Port), traf-�c generators (Traffic, Client, Message, Packet),alarm clocks (Timer), and generic process synchro-nization tools (Mailbox). Objects of the last typecan be bound to TCP/IP ports, providing a reactiveinterface to the Internet.Stations (and also links and ports) represent thestatic components of the program, i.e., the logicalview of the hardware on which the control program orsimulator is run. These objects are typically createdat the very beginning (by the Root process) and re-main present throughout the lifetime of the program.Processes are more dynamic: it is not uncommon tocreate (and destroy) them dynamically for various in-

termediate tasks. Links and ports are mostly used insimulators|to model the passage of packets throughsome \channels."All objects that exhibit dynamic behavior aredubbed activity interpreters (AI). Such objects arecapable of generating events that can be awaited andperceived by processes. For example, whenever some-thing is deposited in a mailbox, the mailbox triggersan event that a process interested in monitoring themailbox contents can perceive and respond to. Sim-ilarly, an event is triggered by Timer when an alarmclock goes o�. Processes are also capable of triggeringsome events; this possibility can be used as a directmeans of inter-process communication (without themediation of mailboxes). In contrast, stations do notexhibit any activities of their own; they do not triggerany events by themselves, and they are not activityinterpreters.3.2 ProcessesA process consists of its private data area and a pos-sibly shared code. Besides accessing its private data,a process can reference the attributes of the stationowning the process, and some other variables consti-tuting the so-called process environment. Processescan communicate in several ways, even if they do notbelong to the same station.A process type usually de�nes a number of at-tributes (they can be viewed as the local data area ofthe process), an optional setup method (a construc-tor), and the perform method specifying the processcode. A process type declaration has the followingsyntax:process ptype : supptype (fptype, stype) f: : : attributes and methods : : :setup (: : :) f : : : g;states fs0, s1, : : :, skg;perform f : : : g;g;where ptype is the name of the declared process type,supptype is a previously de�ned process type, fptypeis the type of the process's parent process, and stypeis the type of the station owning the process. As forother SIDE types, supptype can be omitted if thenew process type is derived directly from the basetype (Process). The two arguments in parenthesesare also optional: they can be skipped if they are notuseful to the process.A process code method resembles the description ofa �nite state machine (FSM). The states declarationassigns symbolic names to the states of this machine.The �rst state on the list is the initial state.



The operation of a process consists in respondingto events. The occurrence of an event awaited by aprocess wakes the process up and forces it into a spe-ci�c state. Then the process (its code method) per-forms some operations and suspends itself. Amongthese operations are indications of future events thatthe process wants to perceive. A typical code methodhas the following structure:perform fstate s0:: : :state s1:: : :g;Two built-in pointers are available to the codemethod: F (of type fptype) pointing to the process'sparent, and S (of type stype) pointing to the stationowning the process.Processes in SIDE are executed as threads withvery simple preemption rules. If we ignore processcreation (when the created process is run for the �rsttime), a process is always run in response to someevent triggered by one of the activity interpreters.The �rst event starting a process is assumed to betriggered by the process itself; thus, in fact, there areno exceptions. One common element of the interfacebetween an AI and a process is the AI's wait methodcallable as ai->wait (ev, st, pr);.The �rst argument of wait identi�es an event; itstype and range are AI-speci�c. The second argumentis a process state identi�er: upon the nearest occur-rence of the indicated event the process will be awak-ened in the speci�ed state. Finally, the last (optional)argument gives the priority of the wait request. If thepriority is absent, a default value (average priority)is assumed.A process may issue a number of wait requests,possibly addressed to di�erent AIs, and then it putsitself to sleep, either by exhausting the list of state-ments associated with its current state or by execut-ing sleep. All the wait requests issued by a processat one state are combined into an alternative of wak-ing conditions: as soon as any of these conditions isful�lled, the process will be restarted in the state in-dicated by the second argument of the correspondingrequest. The priority argument indicates the prece-dence of events that occur simultaneously. This pri-ority is interpreted globally, among all processes thatperceive events at the current moment.When a process is awakened, it always happens be-cause of exactly one event. If the process has beenwaiting for other events, the pending wait requestsare erased and forgotten. The process is awakened by

the earliest of the awaited events. If several events aretriggered at the same time, the event with the high-est priority is selected. If several earliest events havethe same priority, one of them is chosen at random.There is a way of eliminating this non-determinism(it exists because SIDE is also a simulation system)and assigning priorities to such events implied by theorder of their perception by the SIDE kernel.Once a process has been awakened, it will not bepreempted until it decides to put itself to sleep. Itis assumed that processes are strongly I/O bound(using the operating systems terminology), and thenon-preemptive, declared-priority scheduling policyused in SIDE is appropriate for their pattern of ac-tivity. By enforcing the FSM structure of the pro-cess code method, SIDE forces its threads to be or-ganized as fast-responding interrupt processors. Ifthere is a computationally intensive task to be per-formed in a SIDE process, it is natural to split such atask into a chain of interrupts communicating via theIPC mechanisms o�ered by the SIDE kernel. Eachof those interrupts is non-preemptible, but their se-quence is subject to priority scheduling that accountsfor the importance of other tasks. One should no-tice here that computationally intensive tasks are nottypical in SIDE. If there is a true demand for numbercrunching in a SIDE system, the best way to includethis capability is to set up a CPU server running theCPU-bound tasks and communicating the results tothe SIDE kernel via a networked mailbox.3.3 Time in SIDEA SIDE program uses its internal notion of time. Thisinternal time can be mapped to real time (which mustbe done if there is at least one real piece of equipmentcontrolled by the program), or not (in which casethe program behaves as an event-driven, discrete-timesimulator).Time intervals are expressed in the so-called ITUs(indivisible time units) and represented as objects oftype TIME. The precision/range of TIME is selectedby the programmer; there is no explicit limit on thisprecision. By default, when SIDE is set up to workin real time, the ITU is mapped to one microsecond.If required, type TIME is implemented using multiple-precision integer arithmetic.Besides the ITU, SIDE de�nes another unit of time,the so-called ETU, which stands for the experimentertime unit. The reason for this duality is that the ITU(which determines the internal granularity of time)may not be convenient for the the human operator.By default, in the real-time setting of SIDE, the ETUis mapped to one second.



3.4 Mailboxes and Other IPC ToolsProcesses in SIDE can communicate in three di�erentways. First, they can take advantage of the fact thatthey are themselves activity interpreters capable oftriggering events. Thus, it is legal for a process toissue a wait request for another (or even the same)process to get into a speci�c state. Another IPC toolis signal passing. Each process has a signal repositorythat can be used to receive signals (simple messages).The third and most 
exible IPC mechanism is com-munication via mailboxes. A generic mailbox is arepository for possibly structured messages whose ar-rival may trigger various events. Below we list theimplementations of the two public methods of Sensorand Actuator.void Sensor::setValue (int v) {Value = v; put ();};int Sensor::getValue () { return Value; };The second method is trivial, but the �rst one, hav-ing modi�ed the Value, executes put, which is a stan-dard mailbox operation used to deposit an object inthe mailbox. In our case, the object is dummy: puthas no argument and its only action is to trigger aNEWITEM event. This event will be perceived by theprocess (or processes) monitoring the changes of thesensor value.4 EXAMPLES4.1 StationsFor illustration, let us consider a system of conveyorbelts. Each unit of our conveyor system is equippedwith a motor (a switch actuator) driving the unit anda number of sensors detecting the presence of objects(boxes) passing through the unit. In agreement withthe object-oriented paradigm of SIDE, all these ob-jects can be represented as stations descending from asingle station type capturing the common structure ofall units. This common station type can be declaredas follows:station Unit {Actuator *Motor; MotorDriver *MD;Alert *Exception;void setup (NetAddress&, double);};Type Actuator has been presented already. Alertis another descendant of Mailbox, whose role is topass alerts (messages about the abnormal behavior ofthe unit) to the operator. MotorDriver is the type of

the process that will be responsible for the operationof the unit's motor.When a Unit is created, its setup method (the con-structor) receives the network address of the motoractuator and a value representing the inertia of themotor. This value will be used by the motor driverprocess to make sure that the motor is not switchedon and o� too fast. When we talked to people us-ing conveyor systems driven by commercial software,they complained about the jerky behavior of the mo-tors triggered by intermittent spurious sensor signals.Consequently, we have decided to mediate all refer-ences to sensors and actuators through simple pro-cesses whose sole purpose is to dampen the rate ofstatus changes.Below we list the station type representing a seg-ment with one entry and one exit.station Segment : Unit {Sensor *In, *Out; SensorDriver *SDIn, *SDOut;int BoxesInTransit;void setup (NetAddress&, double, // MotorNetAddress&, double, // Entry sensorNetAddress&, double, // Exit sensordouble); // Upper bound on passage time};The setup method of Segment accepts seven argu-ments describing the parameters of one actuator (themotor switch) and two sensors (one sensing boxes en-tering the belt, the other monitoring the output endof the segment). The double argument associatedwith a sensor/actuator speci�es its inertia, i.e., theamount of time for which a new condition (value)must persist to be considered valid. The last argu-ment is a bound (in seconds) on the amount of timeneeded by a box to travel through the segment. Itwill be used to diagnose jams.This is the actual code of the setup methods an-nounced in the two station types:void Unit::setup (NetAddress &mr, double inr) {Exception = create Alert (getOName ());Motor = create Actuator (mr);MD = create MotorDriver (mr, inr);};void Segment::setup (NetAddress &mr, double mi,NetAddress &en, double ei,NetAddress &ex, double xi,double TransitTimeBound) {Unit::setup (mr, mi);BoxesInTransit = 0;In = create Sensor (en);Out = create Sensor (ex);SDIn = create SensorDriver (In, ei);SDOut = create SensorDriver (Out, xi);



create SegmentDriver (TransitTimeBound);};The setup methods create the needed componentsof the station, i.e., the mailboxes and processes. Thisis accomplished by operation create whose argu-ments are passed to the setup method of the createdobject.Method getOName, invoked to produce the argu-ment of Alert's setup method, returns a characterstring representing the name of the current object.This way, the alert will be tagged with the name ofthe segment, and the operator will be able to tell thesource of the messages appearing on the screen. Ob-jects in SIDE have several kinds of naming attributesthat can be used to identify them for the purpose ofdisplaying their status by DSD.4.2 ProcessesLet us start from the sensor driver process, whichdampens the rate of changes in the sensor value, sothat it is kept below the speci�ed inertia. This pro-cess is declared as follows:process SensorDriver (Unit) {Sensor *TheSensor; int LastValue;TIME Inertia, Resume;void setup (Sensor *s, double inertia) {LastValue = (TheSensor = s)->getValue;Inertia = (TIME) (Second * inertia);};states {StatusChange};perform;};The �rst line of the above declaration indicates thatSensorDriver is a basic process type and that pro-cesses of this type will run at stations belonging totype Unit or its subtypes. The setup method setsTheSensor to point to the sensor driven by the pro-cess, converts the speci�ed inertia to internal timeunits (ITUs) and initializes LastValue to the current(initial) value of the sensor. The process has only onestate; its simple code method is listed below.SensorDriver::perform {int NewValue;state StatusChange:if ((NewValue = TheSensor->getValue ())== LastValue) {TheSensor->wait (NEWITEM, StatusChange);sleep;}signal (LastValue = NewValue);Timer->wait (Inertia, StatusChange);};

When the process wakes up (in its only state), itchecks whether the current value of the sensor is thesame as the previous value. If this happens to bethe case, the process issues a wait request to the sen-sor (to perceive the change in its value) and puts it-self to sleep. Otherwise it executes its own signalmethod, passing it the new value as the argument,and sleeps for Inertia time units before transitingback to StatusChange. This way, all changes in thesensor value will be ignored for Inertia ITUs afterthe last change was reported.SensorDriver reports changes of the sensor valueby sending a signal to itself. The signal repository ofSensorDriver can be consulted by any process thatwants to perceive the dampened status of the sensor.The same idea (but acting in the opposite direction)is used in MotorDriver.Now we may have a look at the process actuallydriving the conveyor segment. Its type is declared asfollows:process SegmentDriver : Overrideable (Segment) {MotorDriver *MD; SensorDriver *SDIn, *SDOut;Alert *Exception; TIME OutTime, EETime;void setup (double);states {WtSensor, Input, Output, PcOverride};perform;};This type descends from Overrideable, which is aprocess subclass intended for processes whose actionscan be overridden fromoutside (e.g., by the operator).Overrideable o�ers some standard tools that can beused for this purpose.The setup method of SegmentDriver takes onedouble argument, which is the bound on the pas-sage time through the segment. It is typical for aSIDE process to store in its attributes local copiesof the relevant attributes of the station at which theprocess is run. We can see this in the following setupmethod of SegmentDriver:void SegmentDriver::setup (double ttime) {Overrideable::setup (S->getOName ());MD = S->MD; SDIn = S->SDIn;SDOut = S->SDOut; Exception = S->Exception;EETime = (TIME) (Second * ttime);};Each \overrideable" process is linked to an over-ride object that can be referenced by the operatorto request an override action for the process. Over-rides are not basic objects in SIDE, but they are im-plemented via mailboxes. The setup method of theOverrideable portion of SegmentDriver is invokedto tag the process's override object with an identi�er



(the name of the station at which the process is run-ning), so that it can be easily located by the operator.Now we are ready to look at the code method ofSegmentDriver.SegmentDriver::perform {TIME TIdle;state WtSensor:onOverride (PcOverride);SDIn->wait (SIGNAL, Input);SDOut->wait (SIGNAL, Output);if (S->Motor->getValue () == ON) {if ((TIdle = Time - OutTime) < EETime) {Timer->wait (EETime-TIdle, WtSensor);} else {MD->signal (OFF);Exception->notify ("Jam");}}state Input:if (TheSignal == ON) {MD->signal (ON); S->BoxesInTransit ++;}proceed WtSensor;state Output:OutTime = Time;if (TheSignal == OFF) {if (S->BoxesInTransit) {if (--(S->BoxesInTransit) == 0)MD->signal (OFF);} elseException->notify ("Unexpected box");}proceed WtSensor;state PcOverride:overrideAcknowledge ();switch (overrideAction ()) {case OVR_MOTOR_CNTRL:S->Motor->setValue (overrideValue ());onOverride (PcOverride);sleep;case OVR_SET_COUNT:S->BoxesInTransit = overrideValue ();OutTime = Time;onOverride (PcOverride);sleep;case OVR_RESUME:default:S->In->setValue (S->In->getValue ());S->Out->setValue (S->Out->getValue ());proceed WtSensor;}};The process starts in its �rst state; this is also themain state where the process awaits the sensor events.The �rst operation in state WtSensor is onOverride(de�ned in the Overrideable class), which declares

the state to be assumed when an override action isforced by the operator. Then the process issues twowait requests addressed to the signal repositories ofthe two processes driving the entry and exit sen-sors. Whenever there is a change in the value ofthe entry sensor (dampened by the driver process),SegmentDriverwill transit to state Input. Similarly,a change in the value of the exit sensor will force theprocess to state Output.In state Input, the process checks whether the newvalue of the entry sensor is ON, which indicates thepresence of a new box. If this is not the case, thesignal is ignored and the process returns immediatelyto its initial state. Otherwise, the motor is switchedon (this operation has no e�ect if the motor is alreadyrunning), and the number of boxes perceived by theprocess to be in transit is incremented by one.In state Output, a transition of the exit sensor fromON to OFF is interpreted as a departure of one box fromthe segment. The time of this event (the global vari-able Time tells the current time in ITUs) is recordedin OutTime. Then the number of boxes in transit isdecremented by one, but not below zero. If this num-ber is zero already, the event is inconsistent with theprocess's perception (there are no boxes in transit,so no boxes should be departing from the segment)and the case is reported to the operator. If the up-dated number of boxes in transit turns out to be zero,SegmentDriver stops the motor. It will be switchedback on as soon as a box is perceived by the entrysensor.The value of OutTime, i.e., the time when the lastbox departed from the segment, is used for jam de-tection. Each time SegmentDriver gets to its initialstate, it checks the status of the motor, i.e., the valueof the Motor actuator. If the motor has been con-tinuously on for EETime units, and OutTime hasn'tchanged in the meantime, the process concludes thatthe last box got stuck somewhere on the belt. Insuch a case, the motor is stopped and the operator isnoti�ed about the problem.State PcOverride is assumed when an explicitoverride action is requested by the operator. Thestandard protocol of responding to such an event re-quires the process to acknowledge the reception ofthe override request. Otherwise the request wouldremain pending, and it would keep triggering moreoverride events until acknowledged. The process canlearn about the speci�c action requested by the opera-tor by calling two methods de�ned in Overrideable.Intentionally, overrideAction tells the type of op-eration to be performed (e.g., motor control, resumenormal operation) and overrideValue speci�es anoptional parameter of the operation. We can see that



the process remains in the overridden state until itsnormal operation is resumed by an explicit request ofthe operator. Note that before transiting to its initialstate (WtSensor), SegmentDriver sets the sensors totheir current values. This operation leaves the sensorvalue intact, but it forces a sensor event. This way thevalues of sensors will be immediately re-examined inthe normal mode of operation. Note that these valuesmay have changed while the process was overridden.5 SUMMARYWe have presented SIDE|a a programming environ-ment for developing distributed reactive programs.The semantics of concurrency in SIDE is simple: non-preemptible threads act like coroutines with implicitcontrol transfer. This approach simpli�es synchro-nization (all problems occur at event boundaries)and, with the right organization of the threads, doesnot impair the real-time performance of the program.The interface of a SIDE program with the con-trolled environment is contained in a single type(mailbox) that can be optionally associated with aTCP/IP port. As the control program only sees vir-tual sensors and actuators separated from their phys-ical counterparts by a translation layer implementedin SIDE, there is no principal di�erence between areal system and its simulated arti�cial model. Thisway, SIDE is also a rapid prototyping tool. A con-trol program in SIDE can be built together with thedevelopment of its underlying physical system.At http://sheerness.cs.ualberta.ca/~pawel/SIDE/,the reader will �nd a set of pages about SIDE withpointers to three on-line experiments, including twosimulated networks of conveyor belts.REFERENCESBertan, B. R. Simulation of MAC layer queuing andpriority strategies of CEBus. IEEE Transactionson Consumer Electronics, 35:557{563, Aug. 1989.Dobosiewicz, W., and P. Gburzy�nski. SMURPH:An object oriented simulator for communicationnetworks and protocols. In Proceedings of MAS-COTS'93, Tools Fair Presentation, pages 351{352,Jan. 1993.Dobosiewicz W., and P. Gburzy�nski. An alterna-tive to FDDI: DPMA and the Pretzel Ring. IEEETransactions on Communications, 42:1076{1083,1994.Edwards, S., L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. Design of embedded systems: Formalmodels, validation, and synthesis. Proceedings of

IEEE, 85(3):366{390, 1997.Gamma, E., R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.Gbrzynski, P. Protocol design for local and metropoli-tan area networks. Prentice-Hall, 1996.IEEE P1451.1/D83 Draft standard for a smart trans-ducer interface for sensors and actuators|NetworkCapable Application Processor (NCAP) informa-tion model, Dec. 1996.Molle, M. A new binary logarithmic arbitrationmethod for Ethernet. CSRI-298, ComputerSystems Research Institute, Toronto, Ontario,Canada, 1994.Paulin, P., C. Liem, M. Cornero, F. Nacabal, andG. Goossens. Embedded software in real-time sig-nal processing systems: Application and architec-ture trends. Proceedings of IEEE, 85(3):419{435,1997.Pree, W. Design Patterns for Object-Oriented Soft-ware Development. Addison-Wesley, 1995.AUTHOR BIOGRAPHIESPAWEL GBURZYNSKI received his MSc andPhD in Computer Science from the University ofWar-saw, Poland in 1976 and 1982, respectively. Beforecoming to Canada in 1984, he had been a researchassociate, systems programmer, and consultant inthe Department of Mathematics, Informatics and Me-chanics at the University of Warsaw. Since 1985 hehas been with the Department of Computing Science,University of Alberta where he is a Professor. His re-search interests are in network protocols, operatingsystems, simulation, and performance evaluation.JACEK MAITAN received his MSc in Automa-tion from the Silesian Technical University in 1976,PhD in Electrical Engineering from the Universityof Arizona in 1984, and MBA from Queens Collegein 1996. He held engineering and management po-sitions at MCC, RCA, CompuServe, and Lockheed,providing technical leadership for a number of con-tracts with government agencies, including NASA,ARPA, and ONR. He has extensively consulted forthe industry in the areas of communication and dis-tributed systems. Jacek Maitan is President of ToolsFor Sensors, Inc.


