
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

WIRELESS NETWORK SIMULATION EXTENSIONS IN SIDE/SMURPH

Pawel Gburzynski
Ioanis Nikolaidis

Computing Science Department
University of Alberta

Edmonton, AB T6G 2E8, Canada

ABSTRACT

We describe the most recent step in the evolution of
SIDE/SMURPH and, specifically, a generic model of a
wireless channel, which enables to use the package for ac-
curately modeling wireless networks, especially ad–hoc net-
works consisting of a potentially large number of possibly
mobile nodes. The generic nature of the channel model al-
lows the user to introduce functions describing the propaga-
tion characteristics of the actual wireless medium, e.g., the
impact of distance on signal level and interference, as well as
the relationship between the signal-to-interference ratio and
the probability of a successful packet reception. To illustrate
the capabilities of the supported extensions, we review an
example of a shadowing channel model.

1 INTRODUCTION

Producing high fidelity simulations of wireless networks,
such as mobile wireless ad hoc networks or wireless sensor
networks is a concern of many researchers. Yet, as (Kotz et
al. 2004) pointed out, the vast majority of simulations adopt
dangerously simplifying “axioms” when modeling wireless
environments. The end result is that the research commu-
nity, instead of using simulations to express realistic scenar-
ios, routinely uses simplifications of the kind one would ex-
pect in analytical studies. The approach is quite contrary to
the philosophy of why simulations are supposed to be built
in the first place, i.e., to study a rich set of realistic scenarios,
often well beyond what analytical techniques can capture. In
addition, it was also noted (Haq and Kunz 2005) that signif-
icant discrepancy between results from two popular simula-
tors (ns-2 and GlomoSim) exists against each other as well
as against an emulated network. Thus, there is evidence that
simulators are still not always capturing accurately the phys-
ical layer, and equally importantly, thenetwork–wideper-
formance results arenot insensitive to the precision of the
wireless channel model.

While it is true that our understanding of physical chan-
nels evolves, it does not remove the burden for simulators to

provide suitable “hooks” where a user caneasilytinker and
correct the simulated physical model and bring it as close as
possible to the behavior of the real system. To make mat-
ters worse, recent advances in wireless network in the area
of cross–layer protocol designshave further compounded
the demands put on wireless network simulations. Cross–
layer designs relax, or even dissolve, the layered model in
the hope of better performance by trying to capitalize on the
opportunities afforded by the physical layer.

Clearly, simulation environments that separate the layers,
either in the interest of reducing programming complexity,
or just for the sake of modularity, are an unnatural match
for cross–layer design. The physical layer is no longer a
simple “bit pipe”, and needs to be accounted for as a time–
and space–variable, possibly “intelligent”, sub–system that
deserves to be explicitly modeled. In fact the dynamics of
the physical channel can interact with temporal aspects of
higher layer protocol (e.g., transmissions of control mes-
sages) and hence the entire system’s performance is deter-
mined by interactions that could not have been expressed by
simple models where the physical layer is represented as a
sequence of random coin flips to express a certain bit error
rate.

This is not to say that cross–layer design is the only rea-
son why better wireless channel simulations are needed.
Consider for example the case of Hybrid ARQ (HARQ)
schemes. For example, certain Type–II HARQ schemes
combine the received “soft” values per symbol over succes-
sive (re)transmissions of a frame (each one subjected to dif-
ferent fading) and using an algorithm, such as Maximum
Ratio Combining (MRC), to extract the correct “hard” data.
Contrary to what most simulators would be able to express,
multiple packet (re)transmissions are combined into form-
ing one packet arrival at the receiver. Other examples of
diversity (spatial or temporal) exist where the finer study of
the physical layer is significant, e.g., Multiple Input Multiple
Output (MIMO) systems, collaborative interference cancel-
lation schemes, etc.

The rest of the paper presents the wireless extensions re-
cently incorporated into SIDE/SMURPH and the rationale

Gburzynski and Nikolaidis

behind them. SIDE/SMURPH has been described in detail
elsewhere (Gburzynski 1996) and follows a long evolution
since the 80s (under various names: LANSF, SMURPH,
SIDE). It is a discrete event simulation environment and
in its current form it includes a generic model for wire-
less channel support. In principle, all extensible simulation
environments can be extended to eventually include better
support for wireless simulations. What we hope is achieved
with the SIDE/SMURPH extensions is that the right kind
of abstractions have been selected, to encourage the incor-
poration of more accurate physical channel models without
unduly hurting the ability to develop simulations quickly. In
other simulation packages, e.g., ns-2, the reluctance of re-
searchers to tailor the physical layer models, suggests that
the task is perceived as being rather cumbersome. Similar
concerns appear to hold for other systems, even if some of
them, e.g., GloMoSim, incorporated more refined wireless
models to begin with.

The chosen abstractions express what we believe are use-
ful features for describing the behavior of the wireless chan-
nel. Certainly, only time will tell whether the presented ex-
tensions are successful, and in fact they may need to evolve
even further. We believe that providing the right abstractions
is instrumental to encouraging users to think in particular
terms about the problem at hand. To make the point that the
presented extensions are not onerous to use, we provide a
short example of a shadowing channel model.

The remainder of the paper is organized as follows: sec-
tion 2 outlines the two basic abstractions used in the model-
ing extensions implemented in SIDE/SMURPH for wire-
less network simulation support. Certain basic concepts
(the “interference histogram”, and the “activity assessment”)
used by the model are also introduced. Section 3 is a short
example illustrating the expressive power of the extensions.
Section 4 concludes the paper.

2 THE DESIGN OF WIRELESS EXTENSIONS

2.1 Concepts

SIDE/SMURPH already supports abstractions forlinksand
ports, describing, respectively, (broadcast) transmission me-
dia and points of attachments of nodes/stations to such
media. Transmissions are received via ports after a cer-
tain propagation delay. The use of the same abstractions
for wireless environments presented several shortcomings.
First, in a wireless environment, nodes/interfaces attached,
in a logical sense, to a link vary over time with changing dis-
tances due to mobility and physical phenomena, e.g., fading,
thus forming time–varying “neighborhoods”. The tempta-
tion to use one single link connecting all nodes and to,post–
facto, i.e., after delivering the events to the nodes, decide
which events (such as the beginning of a packet reception)
would be visible to which nodes would result in significant

scalability problems. Many events would have had to be ig-
noredafterhaving already burdened the simulator with over-
head for their processing.

We introduce to SIDE/SMURPH a new abstraction,
called anRFChannel , to model wireless links.RFChannel

influences which events (if any) will be delivered to each
node. It models the channel and hence the events it gener-
ates depend on the exact conditions of the channel, including
of course distances between transmitting and receiving node
but also arbitrary functions that influence the signal strength
that can describe position- and time–dependent phenomena,
such as fading and shadowing.

The originalport abstraction presented also limited flex-
ibility, especially when deciding whether a received sig-
nal would eventually morph into a received packet or not.
Again, one could entertain the idea of post–facto calculation
of whether particular conditions were met during the recep-
tion of a packet to decide if it was really received or not, but
at the detriment of expressiveness, generality, and most of
all, efficiency.

As an alternative to ports, we introduce theTransceiver

abstraction which essentially defines a point in space (2D or
3D) at which the combined received signal of one or more
transmissions could trigger events that signify packet activ-
ity. There is no guarantee that events at the transceiver will
eventually result in a packet being received at a node. Hence,
it becomes possible to express complicated conditions that
govern the acceptability of a packet, for example how many
symbol errors in sequence could render the received signal
undecodable. In essence, transceivers introduce the poten-
tial to express relative merits of wireless receiver structures,
beyond just the detection threshold (which is also modeled).

From the viewpoint of a receiver, the potential to receive
and correctly decode a packet is being re-assessed, at least
in principle, at any point in time. However, the per–symbol
simulation of a channel would have been extremely ineffi-
cient for a large network. Instead we opted to separate the
early (crucial) preamble part of a packet (without its acquisi-
tion a receiver cannot “follow” through the rest of the trans-
mission) and the latter part which incorporates the payload.
A separation between a preamble and main body is found in
all wireless transmission protocols and it is a requirement for
receiver synchronization. In addition to noticing the pream-
ble separate and earlier than the rest of the packet (and ap-
plying to it different criteria to determine if it is acceptable),
we also retain the history of what was the impact of other
signals on the received signal in order to re–assess the qual-
ity of the reception as needed. That is, even when the events
related to the preamble and to the rest of the packet are de-
livered, the history of what interference occurredduring the
preamble and during the main body of the packet are still
accessible to the programmer.

In summary, at a receiver, the events resulting from a
transmission are not at an exhausting level (one event per

Gburzynski and Nikolaidis

transmitted symbol per packet) but just enough to relate to
the basic functions expected of a receiver, i.e., the decision
to acquire or not a transmission based on received preamble
and (if it decides to acquire the signal) the process of fol-
lowing through with the reception until either the end of the
transmission or up to a point where a particular condition,
such as low signal strength, is met that forces aborting the
reception. The transceiver is of course capable of inspecting
the interference histogram and deciding on even more spe-
cific issues, for example whether the error correction scheme
could be applied successfully or not, etc., which is useful if
interested in collecting relevant statistics.

2.2 RFChannel

A user ofRFChannel needs to define a collection of virtual
methods describing the channel properties. The most im-
portant functions are listed here. (For the sake of brevity,
the arguments and the return data types are not presented.):

• RFC_att() describes signal attenuation depending on
the distance and possibly other attributes that can be
extracted from the source and destination transceivers.

• RFC_act() is used to tell whether the transceiver
senses any signal at all (carrier sense) based on the to-
tal combined signal level arriving at it at the moment.
A parameter specifies the receiver sensitivity, which is
one of settable parameters of a transceiver. The sole
purpose of this method is to determine when the chan-
nel is perceivedbusyor idle (and when to trigger the
corresponding eventsACTIVITY andSILENCE).

• RFC_bot() is responsible of assessing whether the be-
ginning of a packet arriving at a transceiver is recogniz-
able as such, i.e., the packet stands a chance of being
received. Its arguments are the transmission rate (at
which the packet was transmitted), the received signal
level (the Received Signal Strength Indication, RSSI)
of the packet, the current setting of receiver sensitivity,
and pointer to the special data structure for theinterfer-
ence histogram(section 2.2.1), which stores the history
of interference suffered by the packet’s preamble.

• RFC_eot() determines whether the end of a packet
arriving at a transceiver may trigger a successful re-
ception of the packet. The arguments are exactly as
for RFC_bot , except that the interference histogram
the method can access applies to the main body of the
packet rather than the preamble.

• RFC_erb() returns the randomized number of error
bits within a specified sequence length of bits received,
for a given received signal level, receiver sensitivity,
and interference level. Its role is to describe the distri-
bution of bit errors as a function of the signal to inter-
ference (SIR) ratio. The method is optional and needed

only if the protocol program callserrors or error

which force the flagging of actual “hard” errors.

• RFC_erd() returns the randomized number of re-
ceived bits (under the conditions described by four of
its arguments that are the same as inRFC_erb preced-
ing the occurrence of a user-defineable “special” con-
figuration of bits described by an additional argument.
Typically, that configuration (the timing of its occur-
rence described as a bit interval) is strongly related to
the distribution of bit errors (thus,RFC_erd is closely
correlated withRFC_erb). For example, the method
may return the number of bits preceding the nearest oc-
currence of a run consisting of a given number of con-
secutive bit errors. The method is used solely for trig-
geringBERRORevents, whose interpretation is up to the
protocol program. In particular, if the program is not
interested in perceiving those events, the method need
not be provided.

• RFC_add() is the centerpiece of calculating the aggre-
gation of multiple signals arriving at the receiver at the
same time. Contrary to its mnemonic name, the method
does not sum the signals, but is free to combine them in
whichever fashion best describes the physical medium.
An argument specifies the number of signal level en-
tries, which are in turn provided as an array of simple
structures storing the signal levels of all individual ac-
tivities perceivable by the transceiver. This operation
is also used in calculating the total level of interference
affecting one selected signal; in such a case, the signal
in question is excluded from the calculation.

The default definitions of the above methods provide a
complete but naive functionality. The default (functionally
void) stubs forRFC_erb and RFC_erd raise errors when
called, but it is possible to have a fully functional and non–
trivial channel model that makes no reference to those meth-
ods. For example, one that retains “soft” signal values. Fur-
thermore, the structure describing a signal level,SLEntry

(section 2.3.1, includes a tag, which can be used to asso-
ciate user–defined properties with the signals, e.g., codes for
CDMA–type channels. Signal tags are accessible to, and can
be interpreted by,RFC_add and can therefore affect the way
the multiple signals are combined, e.g., taking into account
more properties than the sheer signal strength at the receiver.

2.2.1 Interference Histogram

The interference histogram passed as the last argument to
RFCbot concerns solely the preamble component of the
packet. On the other hand, the histogram passed toRFCeot

applies to the packet proper, excluding the preamble. In both
cases, the histogram describes the complete interference his-
tory of the respective component as a list of different inter-
ference levels suffered by it within specific intervals.

Gburzynski and Nikolaidis

The interference histogram is a class comprising several
useful methods and two public attributes:

int NEntries;
IHEntry *History;

whereHistory is an array of sizeNEntries . Each entry
in theHistory array is a simple record that looks like this:

typedef struct {
TIME Interval;
double Value;

} IHEntry;

The sum of allInterval s in History is equal to total
duration of the activity being assessed. The correspond-
ing Value attribute of theHistory entry gives the inter-
ference level (as calculated byRFC_add) suffered by the
activity within that interval. The completeHistory cov-
ers as many intervals as many different interference levels
have happened during the perception of the assessed activ-
ity. If the preamble or packet has suffered absolutely no
interference, itsHistory consists of a single entry whose
Interval spans its entire duration and whoseValue is 0.0.
Finally, additional methods are also provided to examine the
interference history, as well as to extract the average, and the
maximum values of the interference histogram over the en-
tire time period, or of particular time fragments of the mon-
itored activity.

2.3 Transceiver

The transmission functionality related toTransceiver is
less interesting from the reception aspects, so we will fo-
cus exclusively on reception–oriented events for which a
transceiver can wait:

• BOT(Beginning of Transmission) occurs as soon as the
transceiver perceives the beginning of packet following
a preamble, andRFC_bot returnsYES for that packet.
The interpretation of this event is that the preamble has
been recognized by the transceiver, which can now be-
gin to try to receive a packet.

• EOT (End of Transmission) occurs as soon as the fol-
lowing three conditions hold simultaneously: 1) the
transceiver perceives the end of packet, 2)RFC_bot re-
turned (earlier)YESfor that packet, 3)RFC_eot returns
YES for the packet in the current stage. The interpreta-
tion of this event is that a packet has been successfully
received.

• BMP(Beginning of My Packet) occurs under the same
conditions asBOTwith one added necessary condition:
the packet must be addressed to the station running
the process that has issued the wait request. Formally,
it means that a helper functionisMy() returnsYES

for the packet (this also covers broadcast scenarios in
which the current station is one of possibly multiple re-
cipients).

• EMP(End of My Packet) differs from EOT in the same
fashion thatBMPdiffers from BOT, that is, the packet
must be addressed to the station running the process
that has issued the wait request. This is the most natural
way of receiving packets at their proper destinations.

• ANYEVENToccurs whenever the transceiver perceives
anything of potential merit (any change in the config-
uration of perceived activities), e.g., when any of the
preceding events would be triggered, if it were awaited.
Beginnings and ends of all packets not necessarily
positively assessed byRFC_bot /RFC_eot , also trigger
ANYEVENT. If any activity boundary or stage occurs at
the moment when the wait request forANYEVENTis is-
sued, the event is triggered within the current time unit.

It is possible to directly monitor the level of interference
suffered by a selected activity, typically a packet being in
some partial stage of reception. The transceiver method
follow() allows the program to declare the activity to be
monitored (followed). If a non-NULL argument is present,
it should point to a packet being carried by one of the ac-
tivities currently perceived by the transceiver. Such a packet
pointer can be obtained, e.g., viaThePacket by receiving
a packet–related eventBOTor BMP, or through explicit in-
quiries addressed to the transceiver about ongoing activity.
If the argument is absent (or NULL), it implies the activ-
ity last examined by a transceiver inquiry. The method re-
turns OK, if the argument (or the last transceiver inquiry)
identifies an activity currently perceived by the transceiver
(in which case the activity whose interference level is to be
monitored has been successfully specified), orERRORother-
wise. Whether a packet will befollow ed or not is a matter
of course left to the implementation. The point here is that
a receiver may not “magically” know that a transmitter is
sending something to it. It has to extract meaning out of the
current level of channel activity and decide whether it is rea-
sonable to expect that it could conceivably receive a packet.
It may, for all practical purposes, decide tofollow a packet
only to identify, after the correspondingEOTthat it was not
really addressed to it. The example in section 3 illustrates
one such case.

Finally, Trasceiver s can wait on additional events
available to them:SILENCE, andACTIVITY , as defined ear-
lier as well asBOP, andEOPwhich allow one to access the
preamble activity (if necessary) independently of the assess-
ment provided byRFC_bot andRFC_eot . Additional use-
ful events areSIGLOW, SIGHIGH, INTLOW, and INTHIGH

that identify when certain thresholds related to the received
signal or to the interference are crossed.

Gburzynski and Nikolaidis

2.3.1 Event Assessment

At any moment, a given transceiver may perceive a num-
ber of packets arriving from different neighbors and being
at different stages. The role of the assessment procedure at
a receiving transceiver is to determine whether any of those
packets should be received or, more specifically, whether it
should trigger the events that will conceptually amount to
its reception. The decisions are arrived at by the collective
interaction of the user-exchangeableassessment methods.

First, RFC_att determines the signal level of the packet
at the perceiving port, based on transmission power and
distance between the sender and the perceiving transceiver.
These two arguments may be sufficient to determine the
packet’s received power—in those propagation models in
which attenuation depends solely on distance, butRFC_att

receives two additional arguments pointing to the source and
destination transceivers. Based on their identity, the user
is able to implement arbitrary attenuation criteria, including
ones that have nothing to do with distance. For example, it
could identify whether (currently) there is an obstacle be-
tween them.

The signal level returned byRFC_att is associated with
the packet at its perceiving transceiver. Suppose that some
transceiverv perceivesn packets denotedp0, . . . , pn−1 with
r0, . . . , rn−1 standing for their received signal levels. The
interference level suffered by one of those packets, saypk

is determined by a combination of all signals of the remain-
ing packets. MethodRFC_add is responsible for calculating
this combination. Generally, the method takes a collection
of signal levels and returns their combined signal level. A
single signal is described by the following structure:

typedef struct {
double Level;
Long Tag;

} SLEntry;

whereLevel is the received level of the signal as calcu-
lated byRFC_att , andTag is theTag attribute used by the
transmitter when the packet was transmitted. The third ar-
gument ofRFC_add is an array of such records; its size is
determined by the first argument.

If the second argument ofRFC_add is nonnegative, it is
viewed as the index of one entry in the signal array that
must be ignored. This is exactly what happens when the
method is called to calculate the interference suffered by one
packet. The collection of signals passed to the method in
the third argument always covers the complete population
of signals perceived by the transceiver. Thus, the indicated
exception refers to the one signal for which the interference
produced by the other signals is to be determined. Some-
timesRFC_add is invoked to calculate the global signal level
caused by all perceived packets with no exception. In such
a case, the second argument isNONE, i.e., –1.

It may happen that the perceiving transceiver is transmit-
ting a packet of its own at the moment when some exter-
nal packets are being perceived. In such a case, the method
should take into account the interference caused by the trans-
mitter (in many realistic cases it will make any reception
impossible). This is where the last argument ofRFC_add

comes into play. If notNULL, it points to a signal record
(SLEntry) describing the transmission of the transceiver’s
own transmitter. IfNULL, it means that the transmitter is
silent. TheLevel attribute of that entry is just the transmis-
sion power level (XPower), and theTag reflects the current
setting of the transceiver’sTag.

The standard version ofRFC_add built into RFChannel

performs simple addition of all the signal levels and ignores
the tags. This should be OK for simple wireless channels;
however, some channels (notably CDMA) may want to di-
versify the impact of different signals on the total level of
interference suffered by a packet, e.g., based on the code
(which can be represented by the tag).

The actual decision regarding a packet’s reception is made
by RFC_bot and RFC_eot . Their meaning is similar, but
they are called at different stages of the packet’s percep-
tion. RFC_bot is invoked at the end of preamble and be-
fore the first bit of the actual packet. In physical terms,
it determines whether the receiver has been able to recog-
nize that a packet is arriving and, based on the quality of
preamble, clock itself to the packet. If the decision isNO, the
packet will not be received. In particular, its next stage (main
body) will not be subjected to another assessment, and the
packet will trigger no reception events. If the method returns
YES, the packet will undergo another assessment,RFC_eot ,
which is invoked immediately after the last bit of the packet.
Note that regardless of whether the earlier assessment by
RFC_bot has been negative or positive, the packet will con-
tinue contributing its signal to the population of activities
perceived by the transceiver until it is heard no more.

3 EXAMPLE: A SHADOWING CHANNEL MODEL

Let us have a look at a complete model of a shadowing chan-
nel. The primary objective of the model is to prescribe the
probability that the arrival of a packet at a transceiver will
result in its positive assessment at the stages of reception
relevant from the viewpoint of the receiver program. To
see what the low-level protocol program expects from the
model, we shall start from the SMURPH code of the three
processes implementing that protocol. For simplicity, we
shall skip the description of the complete layouts of those
processes, which, in addition to the code presented below,
includes thedata area, i.e., private and external attributes
accessible to the process. We assume that the meaning and
role of such attributes is obvious from the context. In partic-
ular, IF (for InterFace) stands for a pointer to the transceiver
object, which formally belongs to the station running the

Gburzynski and Nikolaidis

process. That station, in turn, is represented by the standard
attributeS.

3.1 The Protocol

The transmitter process is as follows:

Xmitter::perform {
state XM_LOOP:

if (!S->ready (MinPl, MaxPl, Frame)) {
Client->wait (ARRIVAL, XM_LOOP);
sleep;

}
if (S->Receiving) {

Rcv->wait (SIGNAL, XM_LOOP);
sleep;

}
RSSI->signal (START);
Timer->wait (LBTDelay, XM_LBS);

state XM_LBS:
RSSI->signal (STOP);
if (RSSI->sigLevel () >= LBT_THRESHOLD) {

Timer->wait (genBackoff (), XM_LOOP);
sleep;

}
IF->transmit (Buffer, XM_DONE);

state XM_DONE:
IF->stop ();
Buffer->release ();
proceed XM_LOOP;

}

At the top of its main loop (stateXM_LOOP), the process
checks if there is a packet to transmit (methodready be-
longing to the process’s owning station) and, if it is not
the case (ready returns false), it idles awaiting a packet’s
arrival (thewait request issued to theClient). Having
acquired a packet, the transmitter makes sure that the re-
ceiver process is not currently in the middle of a packet re-
ception (flagReceiving), in which the process will avoid
interfering until it receives a “go” signal from the other pro-
cess. As a rudimentary technique of collision avoidance,
before commencing the actual transmission, the transmitter
wants to monitor the wireless channel for a certain amount
of time (LBTDelay) to detect a possible ongoing activity in
its neighborhood. This is accomplished with the assistance
of an auxiliary process (of typeADC) pointed to byRSSI.

ADC::perform {
double DT, NA;
state ADC_WAIT:

this->wait (SIGNAL, ADC_RESUME);
state ADC_RESUME:

ATime = 0.0;
Average = 0.0;
Last = Time;
CLevel = IF->sigLevel ();
IF->wait (ANYEVENT, ADC_UPDATE);

this->wait (SIGNAL, ADC_STOP);
state ADC_UPDATE:

DT = (double)(Time - Last);
NA = ATime + DT;
Average = ((Average * ATime) / NA) +

(CLevel * DT) / NA;
CLevel = IF->sigLevel ();
Last = Time;
ATime = NA;
IF->wait (ANYEVENT, ADC_UPDATE);
this->wait (SIGNAL, ADC_WAIT);

}

The process does nothing until it receives a signal
(START from the transmitter), which will force it to state
ADC_RESUME. There the process initializes variables for the
calculation of average signal level and updates them in re-
sponse to any change in the configuration of activities per-
ceived by the transceiver (ANYEVENT). This procedure stops
when the transmitter notifies the process that the monitoring
period is over (theSTOPsignal).

At the end of the monitoring period, the transmitter calls
thesigLevel method of theADCprocess to return the cal-
culated average signal level perceived by the transceiver. If
the signal is above the threshold, the process concludes that
the channel is busy and backs off for a randomized amount
of time (prescribed bygenBackoff). Otherwise, the chan-
nel is assumed idle, and the transmission begins. When com-
pleted (in stateXM_DONE), the process terminates the trans-
mission and marks the packet buffer as empty.

At this stage, the semantics of the channel model are man-
ifest in the values returned byIF->sigLevel() in theADC

process. Those values reflect the combined signal level per-
ceived by the transceiver at any instant of the monitoring
interval, after accounting for the possibly multiple points of
origin of its components, including their attenuation. The
receiver process expects a bit more functionality from the
channel model:

Receiver::perform {
state RCV_WAIT:

S->Receiving = NO;
this->signal (GO);
IF->wait (BOT, RCV_START);

state RCV_START:
S->Receiving = YES;
IF->follow (ThePacket);
skipto RCV_RECEIVE;

state RCV_RECEIVE:
IF->wait (EOT, RCV_GOTIT);
IF->wait (BERROR, RCV_WAIT);
IF->wait (BOT, RCV_START);

state RCV_GOTIT:
if (ThePacket->isMy ())

Client->receive (ThePacket,
TheTransceiver);

proceed RCV_WAIT;

Gburzynski and Nikolaidis

}

As most of the complexity of the reception model is hid-
den in the implementation of the wireless channel, the re-
ceiver structure is deceptively simple. The process wakes
up on theBOTevent triggered on the transceiver. Note that
this event captures the assessment of the first important re-
ception stage, i.e., the moment when the transceiver rec-
ognizes a packet beginning. Following that event, in state
RC_START, the process executesfollow , to indicate that
the packet’s fate should now be traced, and moves to state
RCV_RECEIVEwith one time unit delay to ensure that the
BOT event is no longer present on the transceiver. Then,
in stateRCV_RECEIVE, the receiver awaits the first of three
possible outcomes: 1) anEOTevent (which will mark the
positively assessed reception of the packet’s last bit), 2)
BERROR, which will indicate a lost reception, and 3) another
BOTevent, meaning that another receivable packet, possibly
arriving at a stronger signal than the first one, has taken over
(normally, such an event should be preceded by a lost re-
ception). UponEOT, the process moves to stateRCV_GOTIT

where the packet is formally received, if it turns out to be ad-
dressed to the node running the process (isMy returns true).

3.2 The Channel

The channel model is declared this way:

rfchannel RFShadow {
double NBeta, Sigma, LFac, BNoise, RDist,

CDist;
Long MinPr;

...
private methods
assessment method
void setup (...) ...

};

where the non-method attributes represent the parameters
and are set by the standardsetup method. According to
the shadowing propagation model, signal attenuation is de-
scribed by the following formula:

Pd

Pd0

= −10βlog(d/d0) + σ

wherePd is the power level of the received signal at dis-
tanced, Pd0 is the power level at some reference distance
d0, β is the loss exponent andσ is a lognormal (Gaussian)
random component with a given standard deviation. To fa-
cilitate the calculation ofPd at the destination,NBeta is
set to−β, RDist is set tod0, andLFac is precomputed as
RDistβ/l0, wherel0 is the power loss at distanced0, specif-
ically, l0 = Px/Pd0 , wherePx is the transmit power at the
source. Then, the following assessment method takes care
of calculating the signal loss:

double RFC_att (double xp, double d,
Transceiver *src, Transceiver *des) {

return (d > RDist) ?
xp * LFac *
dBToLin (dRndGauss (0.0, Sigma)) *
pow (d, NBeta) : xp;

};

where Sigma stands for the standard deviation of theσ
component. Note that this component is log-normalized by
dBToLin , which converts decibels to linear. This is because
the model requires power levels and their ratios to be ex-
pressed linearly. Also, it is assumed that nodes never get
closer than the reference distanceRDist , which thus be-
comes the minimum separation distance.

The model does not redefine the defaultRFCadd method,
which assumes that multiple signals at the receiver combine
additively. Here we see how the first stage of packet recep-
tion is assessed:

Boolean RFC_bot (RATE r, double sl,
double sn, const IHist *h) {

return h->bits (r) >= MinPr &&
!error (r, sl, sn, h, -1, MinPr);

};

The interference histogram (typeIHist), whose pointer is
passed as the last argument toRFCbot , stores the interfer-
ence history of the packet as received so far. To be deemed
receivable, a packet must be preceded by at leastMinPr bits
of preamble, and none of those bits must have been received
in error. The argument list oferror includes: the transmis-
sion rater (needed to transform time intervals into bits and
vice versa), the received signal levelsl , the receiver sensi-
tivty sn (ignored in out model), the interference histogram
h, and the specification of the packet fragment (from-to ex-
pressed in bits) to be examined. The present arguments de-
scribe the lastMinPr bits of the packet portion received so
far, i.e., the lastMinPr bits of the preamble.

The end-of-packet assessment is even simpler:

Boolean RFC_eot (RATE r, double sl,
double sn, const IHist *h) {

return !error (r, sl, sn, h);
};

This method simply says that to be correctly received a
packet must have no bit errors. Note that the interference
histogram at this stage excludes the preamble, which must
have been positively assessed byRFCbot for the present
assessment to take place at all. The actual fate of individual
bits is determined by this method:

Long RFC_erb (RATE tr, double sl, double rs,
double ir, Long nb) {

return lRndBinomial(ber(sl/(ir + BNoise)),
nb);

};

Gburzynski and Nikolaidis

which returns the randomized number of bits within a run of
nb bits received at the signal levelsl and interference level
ir . Argumentrs , representing the receiver sensitivity, is
ignored in our model (all receivers operate at the same fixed
sensitivity level).

Note that methodber is one component of the model that
must be supplied by the user. Its simple role is to trans-
form the signal-to-noise ratio (SNR) into the probability that
a single bit is received in error. The important feature of
the assessment strategy is that the actual error rate applied
to a packet component depends on theSNRof this partic-
ular component, and may differ depending on the varying
level of interference during the packet’s reception. For ex-
ample, the standarderror method referenced inRFCbot

andRFCeot , which is applicable to arbitrary chunks of re-
ceived bits, properly accounts for the fact that different runs
of those bits may have suffered different interference levels
(according to the interference histogram) and thus have been
subjected to different error rates. The noise level used as the
denominator in the argument tober includes a fixed back-
ground noise component, which is also a parameter of the
model.

The role of theBERRORevent (intercepted by the transmit-
ter process in stateRECEIVE) is to represent custom condi-
tions occurring at randomized intervals during a packet re-
ception and possibly depending on the momentary bit er-
ror rate. A typical example of such a condition is the loss
of synchronization to the received packet, which will abort
the reception. For example, in balanced encoding, whereby
four-bit (logical) nibbles are represented by six-bit (physi-
cal) symbols, the reception of an illegal symbol amounts to
such a scenario. Given a (dynamic) bit error rate, it is the
role of this method to calculate such randomized intervals:

Long RFC_erd (RATE tr, double sl, double rs,
double ir, Long ver) {

double er = ber (sl/(ir + BNoise));
return (er = dRndPoisson (1.0/(er*er))) >

(double) MAX_Long ?
MAX_long : (Long) er;

};

In this intentionally simplified case, the method returns a
randomized interval (expressed in bits) until the first occur-
rence of a double-bit error, i.e., two consecutive incorrectly
received bits. Similar to other assessment methods, it is cor-
rectly applied to chunks consisting of fragments received
at different levels of interference (and thus different error
rates). Once a process issues a wait request forBERROR,
the system takes care of all this automatically by monitor-
ing different levels of interference suffered by the received
packet, and dynamically recalculating the interval until the
awaited configuration of bits “occurs by chance.” The last
argument ofRFCerd (ignored in this case) can be used to
select among different scenarios of interesting events.

4 CONCLUSIONS

We introduced extensions to SIDE/SMURPH with the spe-
cific intent to support the accurate simulation of wireless
channels, and wireless networks with potentially large num-
ber of nodes. The abstractions introduced were tailored to
express advanced wireless channel models, within reason-
able overhead and user effort demands. An advanced wire-
less channel model cannot be simply a bit pipe with random
independent bit errors. Therefore, we pushed the level of
detail to a level where it is possible to capture and examine
the variations of signals as they are perceived at transceiver
endpoints. The signal strength of several combined trans-
missions, and the interference of such combined transmis-
sions against a specific signal, are exposed to the simulation
programmer and allow one to plug-in realistic channel mod-
els describing the space– and time–variable aspects of the
channel.

REFERENCES

Kotz, K., C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. El-
liott. 2004. Experimental evaluation of wireless simula-
tion assumptions. InProceedings of the 7th ACM interna-
tional symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM 2004), 78–82.

Haq, F. and T. Kunz. 2005. Simulation vs. emulation:
Evaluating mobile ad hoc network routing protocols. In
Proceedings of the International Workshop on Wireless
Ad-hoc Networks (IWWAN 2005), London, England, May
2005. Available online via<http://www.ctr.kcl.
ac.uk/iwwan2005/papers/56.pdf> [accessed
June 5th, 2006].

Gburzynski, P. 1996. Protocol design for local and
metropolitan area networks. New Jersey: Prentice Hall.

AUTHOR BIOGRAPHIES

PAWEL GBURZYNSKI is a professor at the Computing
Science Department of the University of Alberta. He re-
ceived his M.Sc. and Ph.D. from the University of Warsaw
in 1976 and 1982 respectively. He is a member of the ed-
itorial board for the International Journal of Communica-
tion Systems (Wiley). His e-mail address is<pawel@cs.
ualberta.ca> .

IOANIS NIKOLAIDIS is an associate professor at the
Computing Science Department of the University of Al-
berta. He received his M.Sc. and Ph.D. from Georgia
Teach in 1991 and 1994 respectively. He is a member of
the editorial board for Computer Networks (Elsevier) and
for the IEEE Network Magazine. His e-mail address is
<yannis@cs.ualberta.ca> .

