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Abstract—
Workload distribution is critical to the performance of net-

work processor based parallel forwarding systems. Scheduling
schemes that operate at the packet level, e.g., round-robin, can-
not preserve packet-ordering within individual TCP connections.
Moreover, these schemes create duplicate information in processor
caches and therefore are inefficient in resource utilization. Hash-
ing operates at the flow level and is naturally able to maintain per-
connection packet ordering; besides, it does not pollute caches. A
pure hash-based system, however, cannot balance processor load
in the face of highly skewed flow-size distributions in the Internet;
usually, adaptive methods are needed.

In this paper, based on measurements of Internet traffic, we
examine the sources of load imbalance in hash-based scheduling
schemes. We prove that under certain Zipf-like flow-size distribu-
tions, hashing alone is not able to balance workload. We introduce
a new metric to quantify the effects of adaptive load balancing on
overall forwarding performance. To achieve both load balancing
and efficient system resource utilization, we propose a scheduling
scheme that classifies Internet flows into two categories: the ag-
gressive and the normal, and applies different scheduling policies
to the two classes of flows. Compared with state-of-the-art paral-
lel forwarding schemes, our work is unique in exploiting flow-level
Internet traffic characteristics.

I. I NTRODUCTION

Together, the continuing Internet bandwidth explosion and
the advent of new applications have created great challenges
for network forwarding devices, e.g., Internet routers. They
have to offer high throughput, computation power, as well as
flexibility. One answer to these challenges is network proces-
sors (NP) which provide the right balance between performance
and flexibility. (In this paper, we use the two terms,forwarding
engine(FE) and NP, interchangeably.) To achieve high through-
put, NP’s are optimized for key packet forwarding algorithms
and high-speed I/O. More importantly, multiple network pro-
cessors are employed to forward packets in parallel to achieve
scalability.

Although designs from vendors vary, Fig. 1 shows a gener-
alized conceptual model where the forwarding engines are the
basic packet processing units. Essential to such a multi-FE sys-
tem is theschedulerthat dispatches incoming packets to the
FE’s. It is necessary for the scheduler to distribute workload
in a balanced manner so that the system can achieve its full
forwarding potential. In this paper, we divide a scheduler into
two functional units: the loadsplitterand thebalancer/adapter.
The former implements a general packet distribution policy and
the latter is invoked when necessary to adjust load distribution
to achieve load balance.
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Fig. 1. A Multi-processor Forwarding System

In some scheduling schemes, the two functions are naturally
integrated. For example, workload may be distributed in a
round-robin fashion, or an incoming packet may be delivered
to the FE that is least-loaded. Such schemes schedule workload
at thepacket leveland complicate IP forwarding for two rea-
sons. First, reordering of packets within individual TCP con-
nections occurs very frequently in these schemes. Packet re-
ordering within a TCP connection gives TCP false congestion
signals and therefore is detrimental to end-to-end system per-
formance [1, 2]. Second, these schemes are not efficient in FE
cache utilization [3]: by dispatching packets from the same flow
to different FE’s, these schemes leave copies of identical data
in the caches of the individual FE’s.

Hashing is a popular means to distribute load [4–9] in net-
work systems. It is used in parallel IP forwarding systems be-
cause, in contrast to round-robin or minimum-load mapping, it
is able to maintain the packet order of individual TCP connec-
tions. Hashing operates atflow level. The scheduler typically
bases its decision on one or more header fields of an incom-
ing IP packet, e.g., the destination address (DA), the source
address (SA), the destination port (DP), the source port (SP),
and the transport layer protocol number (PN). These fields de-
fine a flow and are used as a key to a hash function; the return
value is used to decide the target FE that the packet should be
forwarded to. Since the selected fields remain constant for all
the packets transmitted over a TCP connection, the FE selected
is always the same and therefore packet order within individual
TCP connections is maintained. In addition, since packets from
one flow are directed sequentially to the same FE instead of be-
ing scattered over several FE’s, a hashing scheme is efficient in
cache utilization [3].

Hashing alone, however, is not able to balance workload
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under highly variable Internet traffic. Adaptive schemes are
needed to accommodate the burstiness and the presence of ex-
tremely large flows [7, 8]. According to our terminology, in a
load scheduler, the splitter implements the hashing scheme and
the balancer/adapter implements load adjustment. We call such
a schedulerhash-based.

This paper makes three contributions:
• First, we prove that due to highly skewed Internet flow size

distributions, hashing alone cannot achieve load balance.
By characterizing a wide range of IP traces, we localize
the sources of load imbalance in a hash-based scheduler.

• Second, we introduce a new metric foradaptation disrup-
tion to quantify the efficiency of adaptive load balancing
schemes. For a system to achieve high forwarding rates,
the disruption to FE caches caused by load adaptation
should be as small as possible.

• Third, we develop a highly efficient load balancer which,
compared with state-of-the-art scheduling schemes, is
unique in capitalizing on flow-level Internet traffic char-
acteristics. The balancer implements an adaptation algo-
rithm that shifts only aggressive flows to balance workload
among FE’s. This design is inspired by IP traffic char-
acterization and the goal to achieve minimum adaptation
disruption.

The rest of the paper is organized as follows. In Section
II we review studies in flow-level Internet traffic characteriza-
tion, load-splitting schemes based on highly variable workload
distributions in network systems, and hash-based load-splitting
schemes in proxy Web cache systems and parallel forwarding
systems. In Section III, we present the system model that this
study targets and introduce notations used in the paper. Sec-
tion IV discusses three sources of load imbalance in a hash-
based distribution scheme. We prove that generally, hashing
alone cannot balance workload given Zipf-like flow-size dis-
tributions. We discuss the concept of adaptation disruption and
describe the load balancer design in Section V. A critical step in
our load balancer is the detection of aggressive Internet flows,
which is discussed in Section VI. Section VII presents simu-
lation results for three adaptation policies under varying design
parameters. Section VIII concludes this work.

II. RELATED WORK

A system design is hardly sound without taking the charac-
teristics of its workload into consideration. For a parallel for-
warding system, it is well known that its workload, the Inter-
net traffic, consists ofelephantsandmice [10, 11]: elephants
represent the small number of high-volume transmissions that
constitute the majority of the traffic mix; mice, on the contrary,
are flows that are large in number but consume much less band-
width. At the connection level, recent measurement studies [12]
have found that the burstiness of Internet traffic is solely due to a
few aggressive flows dominating the others. These large flows,
calledalphaflows, are the result of large files transmitted over
high-bandwidth connections. As a coarser flow aggregation, IP
destination address reference patterns have been found [13] to
follow Zipf-like [14] distributions:

P (R) ∼ 1/Ra, (1)

which says that the frequency of some event (P ) as a function
of its rank (R) often obeys the power-law function with the ex-
ponenta close to1. It is also shown in [13] that the largest
flows have a significant impact on load balancing in hash-based
scheduling schemes.

The ubiquitous phenomenon of highly biased workload in
many Internet systems has motivated a class of schemes which,
to achieve performance goals, divide workload into two groups
and process them differently. To efficiently transfer diverse traf-
fic, packet switches take advantage of hardware advances and
createshort-cutsfor long-lived Internet flows [17–19] which
represent a large portion of system workload. To improve rout-
ing stability and to balance Internet traffic on different links,
[20] proposes routing long-lived flows dynamically while for-
warding short-lived flows on static, pre-provisioned paths. The
idea is to limit load-sensitive routing only to long-lived flows
to reduce the frequency of link-state update messages. To bal-
ance workload for Web server cluster systems, [21] divides the
domains of Web requests into two classes:hot andnormal, and
schedules requests from them independently, using two round-
robin schemes.

Ref. [5] outlines four design goals of load mapping algo-
rithms in the context of multi-server Web proxy cache sys-
tems: low overhead, load balancing, high cache hit rate, and
minimum disruption. The authors propose the hash mapping
scheme,highest random weight(HRW). To map a Web request,
HRW takes the combinations of the object name and the iden-
tifiers of the proxy servers, e.g, their IP addresses, as keys and
returns a list of weight values, one for each server. The server
with the largest weight is chosen to serve the request. Since the
mapping is hash-based, requests for the same object are usually
forwarded to the same server, and therefore cache hit rate is
much higher than in replication-based schemes where an object
can have multiple copies on the servers (see also [3]). The main
strength that distinguishes HRW from other hashing schemes,
however, is its ability to achieve fault tolerance with minimum
disruption, meaning that only a minimum number of object re-
quests are migrated among the servers during server failures.

HRW is extended to heterogeneous server systems in [22],
which leads to the popular cache array routing protocol
(CARP). The idea is to assign cache servers withmultipliers
to scale the return values (i.e., the weights) in HRW. A recur-
sive algorithm is developed to calculate the multipliers such that
the object requests are divided among the servers according to
a pre-defined list of fractions.

Ref. [7] describes a load balancer for parallel forwarding sys-
tems. A two-step table-based hashing scheme [6] is used to
split traffic. Packet header fields are used as a hash key to a
hash function. The return value is used as an index to a look-up
memory to retrieve the target FE. Flows that yield the same in-
dex value are called aflow bundle. Three techniques are used to
achieve load balancing. First, a time stamp is kept and updated
at every packet arrival for each flow bundle. Before the update,
this time stamp is compared with the current system time. If the
difference is larger than a pre-configured value, the flow bundle
is assigned to the processor that is currently least-loaded. Sec-
ond,flow reassignmentmonitors the states of the input queues
of the processors. Flow bundles are redirected from their cur-
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TABLE I
TRACESUSED IN EXPERIMENTS

Trace Length(entries) Description
FUNET 100,000 A destination address trace which is used in evaluating the LC-trie rout-

ing table lookup algorithm in [15] from Finnish University and Research
Network (FUNET).

UofA 1,000,000 A 71-second packet header trace recorded in 2001 at the gateway con-
necting the University of Alberta campus network to the Internet back-
bone.

Auck4 4,504,396 A 5-hour packet header trace from National Laboratory of Applied Net-
work Research (NLANR) [16]. This is one from a set of traces (AuckIV)
captured at the University of Auckland Internet uplink by the WAND
research group between February and April 2000.

SDSC 31,518,464 A 2.7-hour packet header trace from NLANR. Extracted from outgoing
traffic at San Diego Supercomputer Center (SDSC) around the year 2000.

IPLS 44,765,243 A 2-hour packet header trace from NLANR. This is from a set of traces
(Abilene-I) collected from an OC48c Packet-over-SONET links at the
Indianapolis router node.

rent over-loaded processor to the processor with the minimum
number of packets in its queue. Third, excessive flow bundles
are detected and repeatedly assigned to the least-loaded proces-
sors. This is calledflow spraying. (See Section V-A for more
discussion.)

Refs. [8, 9] propose a scheduling algorithm for parallel IP
packet forwarding based on HRW [5] and the robust hashing
[22]. It is noticed that although HRW provides load balanc-
ing over the request object space, load imbalance still occurs
due to uneven popularities of the individual objects. An impor-
tant goal of the adaptive scheme is to minimize the amount of
packet-to-FE re-mappings when balancing workload. The al-
gorithm includes two parts: the triggering policy and the adap-
tation. Periodically, the utilization of the system is calculated
and compared to a pair of thresholds to determine if the sys-
tem is under or over-utilized. In either condition, the adapta-
tion is invoked which adjusts theweights(calledmultipliers in
[22]) for the FE’s to affect load distribution. In other words,
the algorithm treats over or under-load conditions as changes
of processing power of the FE’s. It is proved that the adaptation
algorithm can keep the minimal disruption property of HRW.

III. SYSTEM MODEL

We consider a parallel forwarding system wherem FE’s
(FE1, . . . , FEm) process packets dispatched from the sched-
uler. A packet destined toFEi, is processed at once ifFEi is
idle; otherwise, it is stored in a shared buffer of sizeB (in pack-
ets) in front of the FE’s. Logically, the packet is also appended
to the input queue ofFEi, Qi. Since the buffer size is fixed, the
length of an input queue is between zero and the buffer size. At
any time the limit of a queue’s length depends on the number
of packets in other queues.

The hash-based load splitter maps the incoming flows onto
the individual FE’s. The mapping scheme is a functionH that
establishes relationships between two sets, the set of flow iden-
tifiersS and the set of FE indices. That is

H(·) : S → {1, 2, . . . ,m}

A flow identifier is defined as a vector of one or more fields
of a packet header that remain the same for all the packets in
the flow. It can be one or a combination of DA, SA, DP, SP,
PN. We use the destination IP addresses of incoming packets
as flow identifiers in this paper. This is a coarser level of ag-
gregation than the popular definition of a flow, identified by the
five-tuple,{DA, DP, SA, SP, PN}. The justification here is that
DA sequences represent workload for major forwarding algo-
rithms, e.g., routing table lookup and filtering. Thus,S contains
all the possible destination IP addresses and the notion of flow
size distribution is equivalent to that of address popularity dis-
tribution. Hereafter, we sometimes use destination addresses to
refer to flows and this usage should be clear from the context.

We also measured the flow size distribution (the most im-
portant Internet traffic characteristic considered in this paper)
where a flow is identified by the five-tuple. The results are sim-
ilar when the flow identifier is the destination IP address. We
therefore believe that the results in this paper apply for other
flow definitions.

The processing power ofFEi is defined as its service rate
µi. The total processing power isµ =

∑m
i=1 µi. The packet

arrival rate atFEi is λi which is determined by the aggregate
arrival rateλ (λ =

∑m
i=1 λi) and the mapping schemeH. In

this paper, we consider onlyµi = µ
m , for 1 ≤ i ≤ m.

IV. SOURCES OFLOAD IMBALANCE

We discuss three sources of load imbalance in a hash-based
traffic splitting scheme.

A. Hash Function

The mapping schemeF has to be able to generate uniformly
distributed random FE identifiers for the source setS. This
ensures that, on average,|S|

m flows are mapped to each FE. Al-
though for a non-random input, it is theoretically impossible to
define a hash function that generates random output, it is not
difficult in practice to find a scheme that approximates random
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TABLE II
NO. OF PACKETS OF10 LARGESTFLOWS IN THE TRACES

R FUNET UofA Auck4 SDSC IPLS
1 8233 158707 640730 1183834 2788273
2 7424 24245 440149 581495 944253
3 2971 20769 196513 524542 919088
4 2470 17482 194757 235363 808773
5 2298 15146 186095 212150 732339
6 1614 14305 177388 168384 582367
7 1387 13308 135286 160798 570316
8 1317 12348 135033 138657 510043
9 1309 12028 132812 125531 473562

10 1258 11824 104716 125389 470072
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Fig. 2. IP Address Popularity Distribution Follows Zipf’s Law

data generation [23]. Refs. [4, 6] have found that the Internet
checksum algorithm and the CRC over the five tuple{DA, SA,
DP, SP, PN} give good random outputs.

B. Burstiness of Internet Traffic

Packet network flows are known to bebursty, i.e., packets of
a flow travel in groups [24]. A large number of packets from
one flow arriving at one FE in a short period can swamp the
processor. At the same time, other FE’s may be idling. The
bursty nature of Internet traffic can lead to temporary load im-
balance and cause packet loss. Aside from adjusting flow map-
pings adaptively, buffering and provisioning are the common
practices to accommodate bursty packet arrivals.

C. Skewed Flow Size Distribution

1) Flow-level Internet Traffic Characteristics: To study
flow level Internet traffic characteristics, we have experimented
with traces collected from networks ranging from campus to
major Internet backbones. We show the results for five traces
(see Table I). The address popularity distributions in these
traces are shown in Fig. 2. Although their scales differ, each
curve can be matched by a straight line, i.e., a Zipf-like func-
tion, in the log-log plot. The slopes fitted for the five traces,
SDSC, FUNET, UofA, IPLS, and Auck4, are -0.905, -0.929, -
1.04, -1.21, and -1.66, respectively. Common to all traces is the
presence of several popular addresses dominating a large num-
ber of less popular addresses. Table II shows the the number

of packets in the ten most popular flows of each trace. This
common phenomenon is the motivation of the load balancing
scheme developed in this paper.

2) Implications for Load Balancing:The flow size distri-
bution adds another dimension to the load balancing problem.
In [6], it is realized that “long packet trains will have negative
effects on traffic splitting performance”, and “traffic splitting
is significantly harder when there is a small number of large
flows.” Their solution is a table-based hashing scheme where
mapping can be tuned by adaptive load monitoring mecha-
nisms, which forms the basis for the load balancing scheme
described in [7].

While hashing may manage to balance workload in the aver-
age sense when the flow size distribution is homogeneous, i.e.,
with a finite variance, as proved for HRW in [5], it cannot when
the distribution is so skewed that the coefficient of variation
(CV ) is infinite.

Let m be the number of identical FE’s in a parallel forward-
ing system and letK be the number of distinct addresses, i.e.,
the size ofS. Let pi (0 < i ≤ K) be the popularity of addressi
and letqj (0 < j ≤ m) be the number of distinct addresses dis-
tributed to FEj. It is derived in [5] that HRW, or any hash func-
tion that generates uniformly distributed random numbers over
its hash key space, distributes workload in a balanced way. This
occurs when the the load imbalance of the system, expressed as
theCV of qj :

CV [qj ]2 = (
m− 1
K − 1

)CV [pi]2, (2)

approaches zero asK and the number of packets approach in-
finity. The condition here is thatCV [pi] should be finite.

The discrete-form probability density function (PDF) of a
Zipf-like distribution (Eq. 1) is:

P (X = i) =
1
Z

i−α, i = 1, 2, . . . ,K, α > 1 (3)

whereZ is a normalizing constant:

Z =
K∑

i=1

i−α (4)

Given that the average popularity of theK objects,E[pi], is 1
K ,

we have

CV [pi]2 =
V ar(pi)
E[pi]2

(5)

=
E[p2

i ]− E[pi]2

E[pi]2

=
1
K

∑K
i=1

1
Z2 i−2α

1
K2

− 1

=
K

Z2

K∑
i=1

i−2α − 1

Substituting theCV [pi]2 in Eq. 2, we have

CV [qj ]2 ∼
K(m− 1)
Z2(K − 1)

K∑
i=1

i−2α (6)
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As α > 1 andK →∞, itemsZ and
∑K

i=1 i−2α converge, and
thusCV [qj ]2 is non-zero.

Zipf-like distributions (Eq. 1) are known to have infinite vari-
ance whenα ≤ 3 and infinite mean whenα ≤ 2. This is the
reason that a hash based scheme, such as HRW [5], is not able
to achieve load balancing when the population distribution of
objects in its input space, in our case destination IP addresses,
is Zipf-like with α > 1.

V. L OAD BALANCER

In addition to general desirable features for load-splitting
schemes, to measure the efficiency of adaptive load balancing
schemes, we introduce a new metric for adaptation disruption.
Minimizing this metric is achieved by scheduling only aggres-
sive flows.

A. Goals

The goals of load-splitting algorithms [5] for Web proxy
cache systems apply for the packet schedulers in parallel for-
warding systems. First, the scheduler shown in Fig. 1 sits in
the data forwarding path and therefore should be as efficient as
possible to reduce delay. Second, load balancing is crucial for
the system to achieve its full forwarding potential. As proven
in Section IV, hashing alone cannot achieve load balancing; it
is therefore necessary for the scheduler to monitor the work-
load on the FE’s and perform adjustment at appropriate times.
Third, since each FE usually has its own local fast storage func-
tioning as cache, higher hit rate is desirable. FE cache hit rate is
mainly determined by temporal locality in IP traffic. Schedul-
ing schemes have a big impact on temporal locality seen at each
FE [3]. Finally, the system has to be fault-tolerant to provide re-
liability and graceful degradation when one or more FE’s fail.

Typically, when a system is unbalanced to some degree, the
adaptation mechanism will be triggered to make adjustments
to the mapping from the system’s input to output [7] [8]. The
result is that some flows will be shifted from the most loaded
processors to less loaded ones.

In adaptation, migration of flows from one FE to another ren-
ders some previously cached data in the source FE useless and
causescold start in the target FE’s cache. We call this phe-
nomenonadaptation disruption. Obviously, flow migration is
harmful to forwarding performance and should be done as in-
frequently as possible. Thus in a hash-based parallel forwarding
system, another feature is desirable; we call it minimum adapta-
tion disruption (MAD). ForNP packets forwarded, adaptation
disruption, denoted byζ, is quantified as follows:

ζ =
NS

NP
, (7)

whereNS is the number of flow-shifts. Thus,0 ≤ ζ ≤ 1.
Note that MAD is different from the minimum disruption in

HRW which describes the desirable behavior of a distributed
system in the face of partial failure. Redirecting only flows for
a failed FE causes least disruption to the states of other FE’s.
Adaptation disruption, on the other hand, is caused by flow mi-
grations among FE’s as a result of load balancing efforts. It

measures the degree of disturbance to cache during forwarding.
As the performance gap between computer processor and mem-
ory keeps widening, it is important for an adaptive scheduler
to achieve MAD to maintain overall forwarding performance.
The parameterζ is introduced to relate cache performance to
the frequency of flow-shifts.

In addition, MAD is desirable for maintaining packet order
within TCP connections. When flows are shifted from a heav-
ily loaded FE to a less loaded one as the result of adaptive load
balancing, it is hard to maintain the original packet order for
these flows. Packets of the shifted flows arriving after the mi-
gration are very likely forwarded before some previous pack-
ets that still wait in the queue of the previously heavily loaded
FE. For this reason, minimizing adaptation disruption also min-
imizes the occurrence of packet reordering, which is important
for maintaining end-to-end TCP performance.

A goal of the load sharing scheme in [8] is to minimize flow
re-mapping and thus to minimize packet reordering. FE states,
e.g., cache, are not taken into account. Ref. [8] extends the work
on HRW in [5, 22]. Although non-uniform object popularity is
realized as a potential reason for load imbalance, this aspect of
the workload is not characterized or explored in [8] but is listed
as future work.

Ref. [8] uses the fraction of flow remappings over all flows
existing during a time interval as a measure of disruption. This
is different from the concept of adaptation disruption intro-
duced by Eq. 7.

The denominator in Eq. 7,NP , is the number ofpackets
instead of the number offlows forwarded. The former corre-
sponds to the router performance metric, i.e., packet-per-second
(pps), not flow-per-second. This is essential because flows vary
in size and therefore cannot be used to measure throughput.

The numerator,NS in Eq. 7, is defined as “the number of
flow-shifts” instead of “the number of flows remapped” as in
Table I of [8]. NS is incremented by one each time a flow is
shifted, or remapped, from one FE to another; it doesn’t matter
if this flow has been in the set of flows shifted hitherto. As each
flow-shift can result in a cold-start of the cache in the target
FE, Eq. 7 represents the upper-bound of the cache disturbance
caused by shifting flows. On the other hand, “the number of
flows remapped” in Table I of [8] should be understood as the
size of the set of flows remapped and therefore does not reflect
cache disturbance.

It is worth noting that thepacket sprayingin [7] is proposed
to deal with “rare” “emergency” situations when an excessive
flow bundle by itself exceeds the processing power of one FE.
The scheme does notactively spray to achieve load balance.
In addition, both flow reassignment and packet spraying in [7]
operate on bundles instead of individual flows. A bundle by
definition contains more than one flow. The larger the number
of flows shifted, the more disruption is caused to the states of
the FE’s. It is possible that shifting one bundle causes a large
portion of the target FE cache to be flushed. In contrast, our
goal is specifically to balance load with minimum disruption.
We achieve this goal by identifying and shifting only aggressive
flows.
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B. Design

Most state-of-the-art schedulers migrate flows without con-
sidering their rates, but this is ineffective. As indicated by our
measurements in Section IV, the probability of shifting low-
rate flows should be high since there are many of them. Shift-
ing these flows does not help re-balance the system much, but
causes unnecessary disruption. The high rate flows are few so
it is unlikely that they would be shifted, but it is usually these
flows that cause trouble [13]. While the scheduler is busy shift-
ing low-rate flows, the high-rate ones keep swamping the over-
loaded processor(s).

The Zipf-like flow size distribution and, in particular, the
small number of dominating addresses, indicate that schedul-
ing the most aggressive flows should be effective in balancing
workload among parallel forwarding processors. Since there
are few aggressive flows, the adaptation disruption should be
small. Our scheduler design takes advantage of this observation
and divides Internet flows into two categories: the aggressive
and the normal. By applying different forwarding policies to
the two classes of flows, the scheduler achieves load balancing
effectively and efficiently.

Fig. 3 shows the design of our packet scheduler. When the
system is in a balanced state, packets flow through the hash
splitter to be assigned to an FE. When the system is unbalanced,
the load adapter may decide to override the decisions of the
hash splitter. When making its decisions, the load adapter refers
to a table of high-rate flows developed by the flow classifier.

The hash splitter uses the packet’s destination address as in-
put to a hash function. The packet is assigned to the FE whose
identifier is returned by the hash function. There are several
possible choices for the hash function. For example, the func-
tion could use the low order bits of the address and calculate the
FE as the modulus of the number of FE’s. Alternatively, HRW
could be used to minimize disruption in the case of FE failures.

The load adapter becomes active when the system is unbal-
anced. It checks each passing packet to see whether it belongs
to one of the high-rate flows identified by the classifier. If the
packet belongs to one of these flows, the load adapter sets it to
be forwarded it to the FE with the shortest queue. Any forward-
ing decisions made by the load adapter override those from the

hash splitter; the selector gives priority to the decisions of the
load adapter. In this sense, the hash splitter decides thedefault
target FE for every flow.

As noted above, the load balancer functions only when the
system is unbalanced, which is decided by the triggering pol-
icy (see Section V-C). Periodically, the system is checked and
if it is unbalanced, the load balancer is activated; the least
loaded (possibly idle) FE is identified and the high-rate flows
are shifted to it from their default FE’s decided by the hash
splitter. Later even if, as a result of the adaptation, the system
becomes balanced and the balancer is inactivated, the flows pre-
viously identified in the flow table are still directed to the FE
assigned by the balancer. This is to prevent unnecessary flow
migration.

An important design parameter isF , the size of the bal-
ancer’s flow table. Generally, shifting more aggressive flows,
i.e., having more flows in the table, is more effective as far
as load balancing is concerned. Nevertheless, to reduce cost,
speedup the lookup operation, and minimize adaptation disrup-
tion, the flow table should be as small as possible.

Another component in the system that is critical to the suc-
cess of the load balancing scheme described above is theflow
classifier(See Fig. 3). The flow classifier monitors the incom-
ing traffic to decide which flows are aggressive and should be
put in the balancer’s flow table. We discuss in detail the aggres-
sive flow identification procedure in Section VI.

C. Triggering Policies

The adapter implements the scheduling scheme that de-
cideswhento remap flows (the triggering policy),what flows
to remap, andwhere to direct the packets. To effectively
achieve load balancing with minimum adaptation disruption,
the adapter only schedules packets in the largest flows. Packets
in the smaller flows are mapped to FE’s by the hash scheduler.

There are multiple choices for deciding when the system is
unbalanced and the adapter should be activated to redirect pack-
ets. For example, the adapter can be invoked periodically, i.e.,
triggered by a clock after every fixed period of time. This
scheme is easy to implement, as it does not require any load
information from the system. It may not be efficient, however,
as far as minimizing adaptation disruption is concerned since
it could shift load unnecessarily, i.e., when the system is not
unbalanced.

The adapter can also monitor the lengths of the input queues,
using them as indicators of the workload of the FE’s. Remap-
ping can be triggered by events indicating that the system is un-
balanced to some degree, based on the input buffer occupancy,
the largest queue length, or theCV of the queue length growing
above some pre-defined threshold. The system load condition
could be checked at every packet arrival. This overhead can be
reduced by periodic checking. We simulate several triggering
policies in Section VII.

As another design dimension, the remapping policy decides
to which processor(s) the largest flows should be migrated. One
solution is to redirect all the largest flows to the FE with the
shortest queue.
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VI. D ETECTING AGGRESSIVEFLOWS

In this section, we describe the mechanism used in the flow
classifier to identify aggressive flows.

A. Definition of Aggressive Flows

We define aggressive flows as high-rate flows. Flows that
are both large and fast are the source of long-term load imbal-
ance and are most effective when shifted to balance load. These
flows are similar to the alpha flows in [12]. In addition, taking
the bursty nature of Internet traffic into consideration, we also
classify flows that are smaller in size but are fast enough to
cause short-term load imbalance or buffer-overflow as aggres-
sive flows.

It is pointed out in [11] that flow size and lifetime are inde-
pendent dimensions. There might be correlation between flow
size and rate but generally, the notion of long-lived flows in
most previous studies is not accurate for our purposes. As a re-
sult, short-cut establishment triggering [19] for long-lived flows
cannot be used to detect aggressive flows. Instead, we need a
mechanism that takes into account both the number of packets
and the length of time during which the packets arrive.

B. Detecting Aggressive Flows

We definewindow size, W , as the number of packets over
which flow information is collected. Therefore, the incoming IP
traffic is a sequence of windows:W1,W2, . . . ,Wn, n → ∞,
each containingW packets. Suppose we are receiving packets
in Wi. We find the setFi that contains the largest flows inWi.
The number of flows inFi equals to the size of the flow table,
F , |Fi| = F . F0 = {}. At the end ofWi, we replace the flows
in the flow table by those inFi. This mechanism benefits from
the phenomenon oftemporal localityin network traffic. Due
to thepacket train[24] behavior of network flows, it is highly
possible that flows inFi are also some of the largest ones over
the nextW packets. That isFi ∩ Fi+1 6= {}.

Let δi = |Fi−1∩Fi|. To measure the effect ofW on the con-
tinuity of the content of the flow table due to temporal locality,
we define

∆ =
∑n

i=1 δi/F

n
(8)

where

n =
NP

W

andNP is the number of packets forwarded during the mea-
surement. Thus,0 ≤ ∆ ≤ 1. The larger the value of∆, the
better flow information collected in the current window predicts
aggressive flows for the next window.

Small W values are preferred when the input buffer size is
small and load adjustment must be made to reflect the existence
of smaller scale, short-term bursty flows. LargerW values can
be used for larger buffers where the system can tolerate the load
imbalance caused by bursts of small flows. Fig. 4 shows the ef-
fects ofW on ∆ for the first one million entries of the four
larger traces in Table I withF = 5. The larger the value ofW ,
the better the current aggressive flows predict the future. This
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Fig. 4. Effects ofW on∆ (F = 5)

TABLE III
ARRIVAL RATES (NO. OF PACKETS/SECOND) OF FOUR TRACES

IPLS UofA SDSC Auck4
74608.742 14007.337 3210.378 251.394

high predictability is critical to the success of the flow classi-
fier. Despite the window size, however, experiments show that,
the largest flow of an entire trace is almost always identified as
the largest flow of every window (the smallestW experimented
with is 100). And we will see that shifting even only the one
largest flow is very effective in balancing workload.

VII. S IMULATIONS

In this section, we conduct trace-driven simulations of an
eight-FE system under static hash mapping and adaptive load
balancing schemes. In the former, packets are directed to the
FE’s by the hash splitter only and the results serve as perfor-
mance bounds for the adaptive load balancing scheme. For the
latter, we simulate three adaptation triggering policies for the
balancer.

A. Trace Driven Simulation

The average packet arrival rates (λ) are measured for the four
larger traces (Table III1). IP traffic is well known for its large
variability; hereλ serves only as a gross estimation and is used
to derive the service rates for the FE’s given some system uti-
lizationρ:

µi =
λ/m

ρ
, i = 1, . . . ,m. (9)

Given a trace (so thatλ is fixed) and an overall service rate
(µ), parameters that have major effects on system performance
include: the input buffer sizeB, the number of FE’s (m), the
number of aggressive flows in the flow table,F , the adapta-
tion policy, and classifier window sizeW . We are mainly
concerned, however, about the effects of scheduling policies
and the input buffer size (B) on two performance metrics: the
packet loss rate (η) and the adaptation disruption (ζ). Through-
out the simulations,m = 8, ρ = .8, andW = 1000.

1The FUNET trace does not have arrival time stamp information.
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B. Hash Splitter

The hash splitter implements the following operation

CRC16(DestIPAddress)%m

whereCRC16 is the 16-bit cyclic redundancy check,% is the
modulo operator, andm is the number of FE’s. According to
previous studies of hash function performance ( [4,6]), the CRC
is a very good hash function.

C. Triggering Policies

We tested three triggering policies:

• Periodic Mapping(PM): The adapter schedules aggressive
flows periodically (after each interval ofP packets), re-
gardless of system load situation.

• Buffer Occupancy Threshold(BOT): The adapter is in-
voked if the buffer is filled above some percentage.

• Maximum Queue Length Threshold(MQLT): The adapter
is invoked if the length of the largest queue grows above
some pre-defined threshold, also expressed as a percentage
of the total buffer size.

For comparison purposes, we also simulated hash-based load
splitting without adaptation. For BOT and MQLT, periodic
checking of the system workload condition is implied; for com-
parison purposes, we would assume this period is the same as
that in PM. Thus, the results for PM set upper bounds on the
frequency by which the aggressive flows are shifted from one
FE to another and the amount of adaptation disruption for BOT
and MQLT.

D. Adaptation Disruption

Two sources in our load balancing scheduler contribute most
to adaptation disruption (AD).

First is the decision of the adapter to re-map aggressive flows
to the least loaded FE. If the flows in the flow table are not
currently destined to the target FE, flow-shifts occur. We call
this type of flow-shiftexplicit disruption(ED). ED ' NS ∗ F .

Second, after processing a window of packets, the flow clas-
sifier replaces the content of the current flow table with the
largest flows calculated during the past window. This implic-
itly moves the flows that were not in the table from their current
destination FE, determined by the hash splitter, to the FE de-
cided by the adapter and, at the same time, shifts the replaced
flows to the FE’s determined by the splitter. Flow-shifting
caused by the flow classifier is calledimplicit disruption(ID).
When the classifier updates the content of the flow table at the
end of windowi, the total number of flows to be shifted is
|Fi−1 ∪ Fi| − |Fi−1 ∩ Fi|. For the PM balancing policy,

ID =
n∑

i=1

|Fi−1 ∪ Fi| − |Fi−1 ∩ Fi|

For the other two adaptive policies, the balancer is not always
on, and therefore theirID values should be smaller.

E. Packet Reordering and Loss

Adaptive load balancing in hash-based distribution schemes
comes at the price of packet reordering. Whenever a flow is
shifted from a busy FE to a less loaded one, there is the risk
of packet reordering within this flow. Therefore, the sources of
adaptation disruption are also the sources of potential packet re-
ordering. Shifting a few aggressive flows minimizes adaptation
disruption and for the same reason, causes less packet reorder-
ing than adaptation schemes that shift flows with no regard to
their rates.

Let Li be a flow in a trace, where0 < i ≤ |S| andS is the
set that contains all the flows in the trace. LetPi,j be a packet
in Li, where0 < j ≤ Ni andNi is the number of packets in
Li. Let Ti,j be the time that the packetPi,j is observed at the
input port andT ′

i,j the time that it is observed at the output port.
At the input port,Ti,j < Ti,j+1, 0 < j < Ni. At the output
port, however, due to possible packet reordering,T ′

i,j might be
larger thanT ′

i,j+1. If

r(i, j) =
{

1 if T ′
i,j > T ′

i,j+1

0 otherwise

then the packet reordering rateRr for NP packets forwarded is

Rr =

∑|S|
i=1

∑Ni

j=1 r(i, j)
NP

In our simulations, there are two reasons for packet loss.
First, the load may not be properly balanced among the FE’s.
The service capability of the whole system is adequate, but
while some FE’s are busy forwarding, other FE’s can be idling.
Therefore, the system is not utilized at its full potential. Over
time, the number of packets in the busy FE’s queues increases
to the limit of the buffer size and newly arriving packets are
dropped. The second reason for packet loss has little to do
with scheduling schemes: the service rate of each FE is calcu-
lated based on theaveragearrival rate of packets; during traffic
bursts, packet arrival rates can be much more than the system
can handle.

F. Simulation Results

Figs. 5 and Fig. 6 show packet loss rates of different adap-
tation policies under varying buffer sizes for the UofA and the
IPLS traces. For both traces, the hash-only scheme (no adapta-
tion) has the highest loss rate and, moreover, increasing buffer
size does not help. On the other hand, the three adaptation
schemes all respond positively to buffer increases. PM achieves
the best loss rates compared to BOT and MQLT.

Fig. 7 shows that changes in buffer size have very slight ef-
fects on adaptation disruption for the three adaptation schemes,
except when the sizes are small. The hash-only policy does not
shift flows from one FE to another and therefore does not in-
cur any adaptation disruption. The PM strategy has the highest
adaptation disruption and this explains why it achieves the the
best loss rate: it re-maps the aggressive flow much more fre-
quently than BOT and MQLT. The difference in adaptation dis-
ruption between MQLT and BOT is small; it seems that MQLT
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Fig. 9. Adaptation Disruption vs Checking Period (The same setting with Fig.
8)

achieves better loss rates (Fig. 5) than BOT at the cost of a little
more adaption disruption.

An important parameter of the adaptation policies is the
checking period. It controls the system’s responsiveness to load
imbalance. The smaller the interval, the more quickly the sys-
tem responds to load imbalance; this leads to lower packet loss
rate. On the other hand, system load checking is one of the
major parts of the adaptation overhead and could cause more
adaptation disruption. Frequent load checking also consumes
more CPU cycles.

Figs. 8 and 9 show how the checking interval affects loss
rate and adaptation disruption. Generally, the decrease in re-
sponsiveness to load imbalance leads to more packet loss. Fig.
8 shows that compared with PM and MQLT, BOT (with80 per-
cent occupancy threshold value) is more susceptible to check-
ing period increases. Fig. 9 shows that increasing the checking
period is effective in reducing adaptation disruption.

Simulations with other traces show similar trends to the
above results for the UofA and IPLS traces. Differences in scale
are caused by the peculiarities of the largest flows in the indi-
vidual traces. For example, as shown in Table II, the largest
flow in the Auck4 trace is not significantly larger than the sec-
ond, which is unlike the UofA trace where a single largest flow
dominates. This implies that, for the Auck4 trace, scheduling
only the one largest flow might not be able to spread load evenly
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Fig. 11. The Effects of Scheduling More Flows on Adaptation Disruption
(with the same setting as Fig. 10)

over multiple processors. This can be solved partly by adding
more flows into the flow table at the cost of more adaptation
disruption.

In the following simulations, we experiment with the Auck4
trace to study the effect of scheduling a larger number of ag-
gressive flows on packet loss rate, adaptation disruption, and
packet reordering. The results are shown in Figs. 10, 11, and
12. In each figure, thex axis denotes the number of most ag-
gressive flows. That is,x = 1 represents the case when only
the most aggressive flow in the trace is used in load balancing;
x = 2 means the largest two flows are scheduled, and so on.

Fig. 10 shows the effectiveness of scheduling more aggres-
sive flows in reducing loss rates for the Auck4 trace for the
three adaptive policies. It seems that for a given configura-
tion, beyond a certain number of aggressive flows, the benefit of
scheduling more flows becomes negligible. On the other hand,
as shown in Fig. 11, adaptation disruption increases linearly
with the number of flows scheduled. Therefore, it is both im-
portant and desirable to limit the number of flows in the flow
table.

Fig. 12 shows simulation results of packet reordering rates
for the Auck4 trace. Like adaptation disruption, packet reorder-
ing is affected mainly by the number of flows shifted. Among
the three triggering policies, BOT performs best.

To further illustrate the advantages of shifting the most ag-
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Fig. 12. The Effects of Scheduling More Flows on Packet Reordering (with
the same setting as Fig. 10)

TABLE IV
COMPARISON BETWEENSHIFTING ONLY THE MOST AGGRESSIVEFLOW

AND SHIFTING ONLY LESSAGGRESSIVEONES

Simulation Auck4 Auck4 IPLS IPLS
MAF LAF MAF LAF

No. of Flows 1 14 1 3
η .176 .177 .0260 .0218
ζ .0417 .688 .0364 .110
Rr .0581 .111 .00958 .0888
CV [qj ] .213 .250 .114 .127

Simulation SDSC SDSC UofA UofA
MAF LAF MAF LAF

No. of Flows 1 2 1 500
η .0277 .0239 0.0367 .111
ζ .0345 .0716 .0443 25.2
Rr .00615 .00764 .0336 .0503
CV [qj ] .0907 .0776 .167 .285

gressive flows, we compare the results of two simulations:
scheduling only the most aggressive flow (MAF) and schedul-
ing only a number of less aggressive flows (LAF) to achieve
similar loss rates as with shifting MAF. In the simulations, the
MAF is the largest flow identified in the flow table by the ag-
gressive flow detection mechanism described in Section VI.
The LAF’s are the second largest, the third largest, etc., in the
same flow table. We simulate the PM policy with a 20-packet
checking period.

Note that the simulations for each trace are designed to
achieve similar loss rates. If system throughput can be ex-
pressed as forwarding rate, the throughput achieved by the two
scheduling strategies is similar, too. What we want to show
are the differences in the CV, the adaptation disruption, and the
reordering rate under the two schemes for each trace.

Table IV summarizes the results for four traces. With similar
packet loss rates (η), MAF scheduling always causes less adap-
tation disruption (ζ) and packet reorders (Rr). For the Auck4,
IPLS, UofA traces, MAF scheduling also balances load bet-
ter, as shown by the smaller CV. More than one LAF is always
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needed to achieve similar packet loss rates as MAF scheduling.
The least number of LAF’s needed is two, as in the SDSC case
where scheduling LAF’s achieves a lower miss rate andCV [qi].
One reason might be that in the SDSC trace, the MAF identi-
fied by the mechanism in Section VI only accounts for a small
portion of the total traffic, not significant enough for the MAF
scheduling strategy to outperform LAF scheduling by a large
margin. The other extreme is the UofA trace, where the MAF
by itself represents around 16 per cent of the aggregate traffic;
when it is scheduled onto an FE, even if the rest of the traffic is
spread evenly among the other seven FE’s (each 12 per cent),
the system is still not perfectly balanced.

It is important to note that the arrival rateλ for the Auck4
trace (see Table III) used to decide the FE service rates (Eq. 9)
in the simulations of Figs. 10, 11, and 12 is theaveragerate
over five hours. Arrival rates during shorter intervals may be
much higher. For example, the arrival rate for the first one mil-
lion packets in the Auck4 trace is1.3 times the average rate.
The service rate of the system, however, is only1.25 times the
average arrival rate. In such situations, packet losses occur re-
gardless of the scheduling scheme. Therefore, under similar
adaptation configurations, differences in arrival rate variabil-
ity account for different loss rates, adaptation disruption, and
packet reordering rates, for different traces.

VIII. C ONCLUSIONS

The highly skewed Internet flow size distribution has pro-
found implications for Internet forwarding system design. First,
we have proved in this paper that the Zipf-like flow popularity
distribution, which has infinite mean and variance, is a major
source of load imbalance in a hash-based packet dispatching
scheme. Second, to measure the efficiency of adaptive schedul-
ing schemes, we introduce a new metric, the adaptation dis-
ruption, which quantifies the effect of adaptive algorithms on
cache performance and is an important touchstone for evalu-
ating overall parallel forwarding system performance. Third,
flow-level Internet traffic characterization inspires the classi-
fication of flows into two categories: the aggressive and the
normal. By applying different scheduling policies to the two
classes, we have been able to build a highly effective and effi-
cient scheduler that can be used in parallel Internet forwarding
devices.

Instead of migrating flows, regardless of their nature, from
heavily load FE’s to less loaded ones, our scheduler shifts only
a few aggressive flows when the system is unbalanced. Ma-
nipulating these flows is effective because they are the major
source of load imbalance. At the same time, since their number
is small, migrating only these flows has the potential to cause
little adaptation disruption to the FE’s cache. We expect much
higher disruption in adaptive load balancing schemes that do
not take flow size distribution into account. Experiments show
that due to temporal locality in Internet traffic, the aggressive
flows can be readily identified, which indicates that the pro-
posed load balancer is highly feasible.

Highly skewed popularity distributions exist in workloads for
many network systems. Dividing these workloads into two or
more categories and treating each group differently is a general
idea that could be effective in improving system performance.

For example, WWW server cluster systems could benefit from
hash-based load distribution schemes, e.g., HRW, to improve
cache hit rate and to reduce response time. It is pointed out in
[5], however, that requests for a hot object alone could present
enough load to swamp a server. Such systems could implement
objectreplicationfor the most popular objects so that these ob-
jects have copies on more than one servers and object space
partition by hashing for the other not-so-popular objects so that
each server only hosts a partition of these objects. A load dis-
tribution scheme similar to the one outlined in this paper could
then be used to balance the load. For such systems, a central-
ized scheduling mechanism is essential.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valu-
able comments and constructive criticism.

REFERENCES

[1] J. Bennett, C. Partridge, N. Shectman, “Packet reordering is not patho-
logical network behavior,”IEEE/ACM Transactions on Networking, vol.
7, no. 6, pp. 789–798, Dec. 1999.

[2] E. Blanton, M. Allman, “On making TCP more robust to packet reorder-
ing,” ACM Computer Communication Review, vol. 32, no. 1, pp. 20–30,
Jan. 2002.

[3] W. Shi, M. H. MacGregor, P. Gburzynski, “Effects of a hash-based sched-
uler on cache performance in a parallel forwarding system,” inCommuni-
cation Networks and Distributed Systems Modeling and Simulation Con-
ference (CNDS 2003), Orlando, FL, USA, January 2003, pp. 130–138.

[4] R. Jain, “A comparison of hashing schemes for address lookup in com-
puter networks,”IEEE Transactions on Communications, vol. 40, no. 3,
pp. 1570–1573, October 1992.

[5] D. G. Thaler, C. V. Ravishankar, “Using name-based mappings to in-
crease hit rates,”IEEE/ACM Transactions on Networking, vol. 6, no. 1,
pp. 1–14, February 1998.

[6] Z. Cao, Z. Wang, E. Zegura, “Performance of hashing-based schemes
for Internet load balancing,” inIEEE INFOCOM 2000, Tel-Aviv, Israel,
March 2000, pp. 332–341.

[7] G. Dittmann, A. Herkersdorf, “Network processor load balancing for
high-speed links,” in2002 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS
2002), San Diego, CA, USA, July 2002, pp. 727–735.

[8] L. Kencl, J. Le Boudec, “Adaptive load sharing for network processors,”
in IEEE INFOCOM 2002, New York, NY, USA, June 2002, pp. 545–554.

[9] L. Kencl, Load Sharing for Multiprocessor Network Nodes, Ph.D. thesis,
Swiss Federal Institute of Technology (EPFL), January 2003.

[10] L. Guo, I. Matta, “The war between mice and elephants,” inIEEE ICNP
2001, Riverside, CA, USA, 2001.

[11] N. Brownlee, K. Claffy, “Understanding Internet traffic streams: Dragon-
flies and tortoises,”IEEE Communications, vol. 40, no. 10, pp. 110–117,
Oct. 2002.

[12] S. Sarvotham, R. Riedi, R. Baraniuk, “Connection-level analysis and
modeling of network traffic,” inACM SIGCOMM Internet Measurement
Workshop, San Francisco, CA, USA, November 2001, pp. 99–103.

[13] W. Shi, M. H. MacGregor, P. Gburzynski, “Synthetic trace generation for
the Internet: An integrated model,” 2003, Submitted.

[14] G. K. Zipf, Human Behavior and the Principle of Least-Effort, Addison-
Wesley, Cambridge, MA, 1949.

[15] S. Nilsson, G. Karlsson, “IP-address lookup using LC-tries,”IEEE Jour-
nal on Selected Areas in Communications, vol. 17, no. 6, pp. 1083–1092,
June 1997.

[16] NLANR (National Laboratory for Applied Network Research) Measure-
ment and Operations Analysis Team (MOAT), “Packet header traces,”
http://moat.nlanr.net.

[17] P. Newman, G. Minshall, L. Huston, “IP switching and gigabit routers,”
IEEE Communication Magazine, vol. 35, no. 1, pp. 64–68, January 1997.

[18] Y. Rekhter, B. Davie, E. Rosen, G. Swallow, D. Farinacci, D. Datz, “Tag
switching architecture overview,”Proceedings of the IEEE, vol. 85, no.
12, pp. 1973–1983, 1997.
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