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Abstract— Forwarding Engines:
Workload distribution is critical to the performance of net- Input Queues & mnates
work processor based parallel forwarding systems. Scheduling : 1 FE 1
schemes that operate at the packet level, e.g., round-robin, can- ‘ T cache
not preserve packet-ordering within individual TCP connections. ‘
Moreover, these schemes create duplicate information in processor Traffic Scheduler : T _
caches and therefore are inefficient in resource utilization. Hash- - 1 :
ing operates at the flow level and is naturally able to maintain per- ’7

. . |FE3
connection packet ordering; besides, it does not pollute caches. A cache
pure hash-based system, however, cannot balance processor load —= |FE4
in the face of highly skewed flow-size distributions in the Internet; R EREEEEEEEE
usually, adaptive methods are needed.

In this paper, based on measurements of Internet traffic, we
examine the sources of load imbalance in hash-based scheduling
schemes. We prove that under certain Zipf-like flow-size distribu-
tions, hashing alone is not able to balance workload. We introduce
a new metric to quantify the effects of adaptive load balancing on In some scheduling schemes, the two functions are naturally
overall forwarding performance. To achieve both load balancing jntegrated. For example, workload may be distributed in a
and efficient system resource utilization, we propose a scheduling round-robin fashion, or an incoming packet may be delivered

scheme that classifies Internet flows into two categories: the ag- .
gressive and the normal, and applies different scheduling policies to the FE that is least-loaded. Such schemes schedule workload

to the two classes of flows. Compared with state-of-the-art paral- at thepacket leveland complicate IP forwarding for two rea-
lel forwarding schemes, our work is unique in exploiting flow-level sons. First, reordering of packets within individual TCP con-

cache

j

Fig. 1. A Multi-processor Forwarding System

Internet traffic characteristics. nections occurs very frequently in these schemes. Packet re-
ordering within a TCP connection gives TCP false congestion
|. INTRODUCTION signals and therefore is detrimental to end-to-end system per-

grmance [1,2]. Second, these schemes are not efficient in FE

the advent of new applications have created great challeng8§he utilization [3]: by dispatching packets from the same flow
for network forwarding devices, e.g., Internet routers. The different FE's, thgse_s_chemes leave copies of identical data
have to offer high throughput, computation power, as well #& the caches of the individual FE's.
flexibility. One answer to these challenges is network proces-Hashing is a popular means to distribute load [4-9] in net-
sors (NP) which provide the right balance between performan#€rk systems. It is used in parallel IP forwarding systems be-
and flexibility. (In this paper, we use the two terrfarwarding cause, in contrast to round-robin or minimum-load mapping, it
engine(FE) and NP, interchangeably.) To achieve high throug#s able to maintain the packet order of individual TCP connec-
put, NP’s are optimized for key packet forwarding algorithméons. Hashing operates #iow level The scheduler typically
and high-speed 1/0. More importantly, multiple network probases its decision on one or more header fields of an incom-
cessors are employed to forward packets in parallel to achidd@ |P packet, e.g., the destination address (DA), the source
scalability. address (SA), the destination port (DP), the source port (SP),
Although designs from vendors vary, Fig. 1 shows a geneid the transport layer protocol number (PN). These fields de-
alized conceptual model where the forwarding engines are fiifee a flow and are used as a key to a hash function; the return
basic packet processing units. Essential to such a multi-FE syglue is used to decide the target FE that the packet should be
tem is theschedulerthat dispatches incoming packets to théorwarded to. Since the selected fields remain constant for all
FE's. It is necessary for the scheduler to distribute worklodtie packets transmitted over a TCP connection, the FE selected
in a balanced manner so that the system can achieve its falflways the same and therefore packet order within individual
forwarding potential. In this paper, we divide a scheduler intbCP connections is maintained. In addition, since packets from
two functional units: the loasplitter and thebalancer/adapter one flow are directed sequentially to the same FE instead of be-
The former implements a general packet distribution policy afiey scattered over several FE's, a hashing scheme is efficient in
the latter is invoked when necessary to adjust load distributi6ache utilization [3].
to achieve load balance. Hashing alone, however, is not able to balance workload

Together, the continuing Internet bandwidth explosion arl



under highly variable Internet traffic. Adaptive schemes awhich says that the frequency of some evan} &s a function
needed to accommodate the burstiness and the presence ob€its rank (R) often obeys the power-law function with the ex-
tremely large flows [7, 8]. According to our terminology, in gonenta close tol. It is also shown in [13] that the largest
load scheduler, the splitter implements the hashing scheme fiod/s have a significant impact on load balancing in hash-based
the balancer/adapter implements load adjustment. We call sscheduling schemes.
a schedulehash-based The ubiquitous phenomenon of highly biased workload in
This paper makes three contributions: many Internet systems has motivated a class of schemes which,
« First, we prove that due to highly skewed Internet flow siz® achieve performance goals, divide workload into two groups
distributions, hashing alone cannot achieve load balanead process them differently. To efficiently transfer diverse traf-
By characterizing a wide range of IP traces, we localifec, packet switches take advantage of hardware advances and
the sources of load imbalance in a hash-based schedulereateshort-cutsfor long-lived Internet flows [17—-19] which
« Second, we introduce a new metric ffaptation disrup- represent a large portion of system workload. To improve rout-
tion to quantify the efficiency of adaptive load balancingng stability and to balance Internet traffic on different links,
schemes. For a system to achieve high forwarding rat§20] proposes routing long-lived flows dynamically while for-
the disruption to FE caches caused by load adaptatisarding short-lived flows on static, pre-provisioned paths. The
should be as small as possible. idea is to limit load-sensitive routing only to long-lived flows
« Third, we develop a highly efficient load balancer whichto reduce the frequency of link-state update messages. To bal-
compared with state-of-the-art scheduling schemes, a@ace workload for Web server cluster systems, [21] divides the
unique in capitalizing on flow-level Internet traffic char-domains of Web requests into two clasdestandnormal and
acteristics. The balancer implements an adaptation algwhedules requests from them independently, using two round-
rithm that shifts only aggressive flows to balance workloagbbin schemes.
among FE's. This design is inspired by IP traffic char- Ref. [5] outlines four design goals of load mapping algo-
acterization and the goal to achieve minimum adaptatioithms in the context of multi-server Web proxy cache sys-
disruption. tems: low overhead, load balancing, high cache hit rate, and
The rest of the paper is organized as follows. In Sectioninimum disruption. The authors propose the hash mapping
Il we review studies in flow-level Internet traffic characterizaschemehighest random weigfHRW). To map a Web request,
tion, load-splitting schemes based on highly variable worklodtRW takes the combinations of the object name and the iden-
distributions in network systems, and hash-based load-splittititiers of the proxy servers, e.g, their IP addresses, as keys and
schemes in proxy Web cache systems and parallel forwarditegurns a list of weight values, one for each server. The server
systems. In Section Ill, we present the system model that thigh the largest weight is chosen to serve the request. Since the
study targets and introduce notations used in the paper. Se@pping is hash-based, requests for the same object are usually
tion IV discusses three sources of load imbalance in a hasbrwarded to the same server, and therefore cache hit rate is
based distribution scheme. We prove that generally, hashimgich higher than in replication-based schemes where an object
alone cannot balance workload given Zipf-like flow-size digsan have multiple copies on the servers (see also [3]). The main
tributions. We discuss the concept of adaptation disruption asidength that distinguishes HRW from other hashing schemes,
describe the load balancer design in Section V. A critical steplwever, is its ability to achieve fault tolerance with minimum
our load balancer is the detection of aggressive Internet flowisruption, meaning that only a minimum number of object re-
which is discussed in Section VI. Section VII presents sim@uests are migrated among the servers during server failures.
lation results for three adaptation policies under varying designHRW is extended to heterogeneous server systems in [22],

parameters. Section VIII concludes this work. which leads to the popular cache array routing protocol
(CARP). The idea is to assign cache servers withitipliers
Il. RELATED WORK to scale the return values (i.e., the weights) in HRW. A recur-

A system design is hardly sound without taking the charative algorithm is develope.d.to calculate the multipliers such.that
teristics of its workload into consideration. For a parallel fof"€ Object requests are divided among the servers according to
warding system, it is well known that its workload, the Inter® Pre-defined list of fractions. _
net traffic, consists oélephantsand mice[10, 11]: elephants Ref. [7] describes a load balancer fgr parallel forwa@ng Sys-
represent the small number of high-volume transmissions thgfs: A two-step table-based hashing scheme [6] is used to
constitute the majority of the traffic mix; mice, on the contraryPlit traffic. Packet header fields are used as a hash key to a
are flows that are large in number but consume much less bafigsh function. The return value is used as an index to a look-up
width. Atthe connection level, recent measurement studies [IBfMOrY to retrieve the target FE. Flows that yield the same in-
have found that the burstiness of Interet traffic is solely due t&/§x value are callediéow bundle Three techniques are used to
few aggressive flows dominating the others. These large flo/hieve load balancing. First, a time stamp is kept and updated
calledalphaflows, are the result of large files transmitted oveit €very packet arrival for each flow bundle. Before the update,
high-bandwidth connections. As a coarser flow aggregation,tﬁ‘-*s time stamp is compared with the current system time. If the

destination address reference patterns have been found [13]iffgrence is larger than a pre-configured value, the flow bundle
follow Zipf-like [14] distributions: is assigned to the processor that is currently least-loaded. Sec-

ond, flow reassignmenmnonitors the states of the input queues
P(R) ~ 1/R%, (1) of the processors. Flow bundles are redirected from their cur-



TABLE |
TRACESUSED IN EXPERIMENTS

Trace Length(entries)| Description
FUNET 100,000| A destination address trace which is used in evaluating the LC-trie rout-
ing table lookup algorithm in [15] from Finnish University and Research
Network (FUNET).
UofA 1,000,000| A 71-second packet header trace recorded in 2001 at the gateway con-
necting the University of Alberta campus network to the Internet back-
bone.
Auck4 4,504,396| A 5-hour packet header trace from National Laboratory of Applied Net-
work Research (NLANR) [16]. This is one from a set of traces (Auck|V)
captured at the University of Auckland Internet uplink by the WAND
research group between February and April 2000.

SDSC 31,518,464 A 2.7-hour packet header trace from NLANR. Extracted from outgqing
traffic at San Diego Supercomputer Center (SDSC) around the year 2000.
IPLS 44,765,243| A 2-hour packet header trace from NLANR. This is from a set of traces

(Abilene-I) collected from an OC48c Packet-over-SONET links at [the
Indianapolis router node.

rent over-loaded processor to the processor with the minimuinflow identifier is defined as a vector of one or more fields
number of packets in its queue. Third, excessive flow bundleéa packet header that remain the same for all the packets in
are detected and repeatedly assigned to the least-loaded pratesflow. It can be one or a combination of DA, SA, DP, SP,
sors. This is calledlow spraying (See Section V-A for more PN. We use the destination IP addresses of incoming packets
discussion.) as flow identifiers in this paper. This is a coarser level of ag-
Refs. [8, 9] propose a scheduling algorithm for parallel I§regation than the popular definition of a flow, identified by the
packet forwarding based on HRW [5] and the robust hashifige-tuple,{DA, DP, SA, SP, PN. The justification here is that
[22]. It is noticed that although HRW provides load baland®A sequences represent workload for major forwarding algo-
ing over the request object space, load imbalance still occuithms, e.g., routing table lookup and filtering. Thds;ontains
due to uneven popularities of the individual objects. An impogll the possible destination IP addresses and the notion of flow
tant goal of the adaptive scheme is to minimize the amountsife distribution is equivalent to that of address popularity dis-
packet-to-FE re-mappings when balancing workload. The alibution. Hereafter, we sometimes use destination addresses to
gorithm includes two parts: the triggering policy and the adapefer to flows and this usage should be clear from the context.
tation. Periodically, the utilization of the system is calculated We also measured the flow size distribution (the most im-
and compared to a pair of thresholds to determine if the sysartant Internet traffic characteristic considered in this paper)
tem is under or over-utilized. In either condition, the adaptavhere a flow is identified by the five-tuple. The results are sim-
tion is invoked which adjusts theeights(calledmultipliersin ilar when the flow identifier is the destination IP address. We
[22]) for the FE’s to affect load distribution. In other wordstherefore believe that the results in this paper apply for other
the algorithm treats over or under-load conditions as chandgksv definitions.
of processing power of the FE's. It is proved that the adaptationThe processing power df E; is defined as its service rate
algorithm can keep the minimal disruption property of HRW. 1. The total processing power js = >_'" | y1;,. The packet
arrival rate atF'F; is \; which is determined by the aggregate

lIl. SYSTEM MODEL arrival rateX (A = >, \;) and the mapping schentg. In
We consider a parallel forwarding system whereFE’s this paper, we consider only; = £, for1 <i < m.
(FE:, ..., FE,,) process packets dispatched from the sched-

uler. A packet destined t6'E;, is processed at once HE; is
idle; otherwise, it is stored in a shared buffer of si2éin pack-
ets) in front of the FE's. Logically, the packet is also appended Ve discuss three sources of load imbalance in a hash-based
to the input queue oF E;, ;. Since the buffer size is fixed, thetraffic splitting scheme.
length of an input queue is between zero and the buffer size. At
any time the limit of a queue’s length depends on the numbgr Hash Function
of packets in other queues. . .

The hash-based load splitter maps the incoming flows onéoThe mapping schem has to be able to generate uniformly

the individual FE’s. The mapping scheme is a functidrihat istributed random FE identifiers for the source Set This

| -
establishes relationships between two sets, the set of flow id psures that, on averad% flows. are mappgd to gach FE.' Al
tifiers S and the set of FE indices. That is ough for a non-random input, it is theoretically impossible to

define a hash function that generates random output, it is not
H():S8—{1,2,...,m} difficult in practice to find a scheme that approximates random

IV. SOURCES OFLOAD IMBALANCE



TABLE Il
NO. OF PACKETS OF 10 LARGESTFLOWS IN THE TRACES

of packets in the ten most popular flows of each trace. This
common phenomenon is the motivation of the load balancing
scheme developed in this paper.

R | FUNET | UofA | Auck4 | SDSC IPLS 2) Implications for Load Balancing: The flow size distri-
1 8233 | 158707| 640730 | 1183834 2788273 bution adds another dimension to the load balancing problem.
2 7424 24245| 440149| 581495| 944253 In [6], it is realized that “long packet trains will have negative
3 29711 20769| 196513| 5245421 919088 effects on traffic splitting performance”, and “traffic splitting
4 2470| 17482 194757| 235363| 808773 is significantly harder when there is a small number of large
S 2298 | 15146 186095 212150 732339 flows.” Their solution is a table-based hashing scheme where
6 1614 14305| 177388 168384| 582367 mapping can be tuned by adaptive load monitoring mecha-
7 1387 | 13308| 135286 160798 570316 nisms, which forms the basis for the load balancing scheme
8 1317 | 12348| 135033| 138657| 510043 described in [7].
9 1309 | 12028 132812| 125531| 473562 While hashing may manage to balance workload in the aver-
10 1258 | 11824 104716| 125389| 470072] age sense when the flow size distribution is homogeneous, i.e.,
with a finite variance, as proved for HRW in [5], it cannot when
16407 F— e— the distribution is so skewed that the coefficient of variation
teros b~ oA o 1 (CV) is infinite.
[N T 1Pis - - Let m be the number of identical FE's in a parallel forward-
100000 f-. IR 3 ing system and lek( be the number of distinct addresses, i.e.,
] the size ofS. Letp; (0 < i < K) be the popularity of address
. and letg; (0 < j < m) be the number of distinct addresses dis-
NS E tributed to FEj. Itis derived in [5] that HRW, or any hash func-
\\ ] tion that generates uniformly distributed random numbers over
N its hash key space, distributes workload in a balanced way. This
i o ] occurs when the the load imbalance of the system, expressed as
L ‘ - ARl theCV of g;:
1 10 100 éoagg 10000 100000 1et+0¢€
2 m—1 2
Fig. 2. IP Address Popularity Distribution Follows Zipf’s Law C’V[qj] = (ﬁ)OV[ 7} ’ (2)

approaches zero @ and the number of packets approach in-

data generation [23]. Refs. [4, 6] have found that the Internfatity. The condition here is that'V [p;] should be finite.
checksum algorithm and the CRC over the five tujidd,, SA,

DP, SP, PN give good random outputs. Zipf-like distribution (Eq. 1) is:

. 1., .
B. Burstiness of Internet Traffic PX=i)=—i"" i=12... K a>1 3
Packet network flows are known to barsty; i.e., packets of whereZ is a normalizing constant:
a flow travel in groups [24]. A large number of packets from
one flow arriving at one FE in a short period can swamp the K
processor. At the same time, other FE's may be idling. The Z = Zl_a (4)

bursty nature of Internet traffic can lead to temporary load im-
balance and cause packet loss. Aside from adjusting flow mafiyen that the average popularity of theobjects,E[p;], is L
pings adaptively, buffering and provisioning are the commqpe have
practices to accommodate bursty packet arrivals.

cvppr = o) ©
C. Skewed Flow Size Distribution Elpd
1) Flow-level Internet Traffic Characteristics: To study = M
flow level Internet traffic characteristics, we have experimented Elp]?
with traces collected from networks ranging from campus to % fi 1 %if%‘
major Internet backbones. We show the results for five traces = N -1
(see Table I). The address popularity distributions in these X
traces are shown in Fig. 2. Although their scales differ, each _ K Zi_ga 1
curve can be matched by a straight line, i.e., a Zipf-like func- A P
tion, in the log-log plot. The slopes fitted for the five traces,
SDSC, FUNET, UofA, IPLS, and Auck4, are -0.905, -0.929, Substituting the”V[p;]* in Eq. 2, we have
1.04,-1.21, and -1.66, respectively. Common to all traces is the K
presence of several popular addresses dominating a large num- CVlg;]? ~ K(m—1) ZZ-—QO( (6)
ber of less popular addresses. Table Il shows the the number 2K —1) ~

The discrete-form probability density function (PDF) of a



Asa > 1andK — oo, itemsZ andY " | i~2* converge, and measures the degree of disturbance to cache during forwarding.
thusCVg;]? is non-zero. As the performance gap between computer processor and mem-
Zipf-like distributions (Eq. 1) are known to have infinite vari-ory keeps widening, it is important for an adaptive scheduler
ance whern < 3 and infinite mean when < 2. This is the to achieve MAD to maintain overall forwarding performance.
reason that a hash based scheme, such as HRW [5], is not dltle parametec is introduced to relate cache performance to

to achieve load balancing when the population distribution tie frequency of flow-shifts.

_objgcts_in its_ input space, in our case destination IP addressezfn addition, MAD is desirable for maintaining packet order
Is Zipf-like with o > 1. within TCP connections. When flows are shifted from a heav-
ily loaded FE to a less loaded one as the result of adaptive load
V. LOAD BALANCER balancing, it is hard to maintain the original packet order for
In addition to general desirable features for load-splittingiese flows. Packets of the shifted flows arriving after the mi-
schemes, to measure the efficiency of adaptive load balanc@igtion are very likely forwarded before some previous pack-
schemes, we introduce a new metric for adaptation disruptiéis that still wait in the queue of the previously heavily loaded
Minimizing this metric is achieved by scheduling only aggred=E. For this reason, minimizing adaptation disruption also min-
sive flows. imizes the occurrence of packet reordering, which is important
for maintaining end-to-end TCP performance.

A. Goals A goal of the load sharing scheme in [8] is to minimize flow

The goals of load-splitting algorithms [5] for Web IoroXyre-mapping and thus to minimize packet reordering. FE states,
cache systems apply for the packet schedulers in parallel 189> ¢che, are not taken into account. Ref. [8] extends the work
warding systems. First, the scheduler shown in Fig. 1 sits @ HRW in [5,22]. Although non-uniform object popularity is
the data forwarding path and therefore should be as efficient'§8/ized as a potential reason for load imbalance, this aspect of
possible to reduce delay. Second, load balancing is crucial f3f Workload is not characterized or explored in [8] but is listed
the system to achieve its full forwarding potential. As provefs future work.
in Section 1V, hashing alone cannot achieve load balancing; itRef. [8] uses the fraction of flow remappings over all flows
is therefore necessary for the scheduler to monitor the womrkxisting during a time interval as a measure of disruption. This
load on the FE’s and perform adjustment at appropriate timés.different from the concept of adaptation disruption intro-
Third, since each FE usually has its own local fast storage funtiiced by Eq. 7.
tioning as cache, higher hit rate is desirable. FE cache hit rate i%’he denominator in Eq. 7Np, is the number opackets

mainly determined by temporal locality in IP traffic. Schedulrn tead of the number dfows forwarded. The former corre-

N9 schemes have a big impact on temporal locality seen.at e%f) nds to the router performance metric, i.e., packet-per-second
FE [3]. Finally, the system has to be fault-tolerant to provide r

?bps), not flow-per-second. This is essential because flows vary

liability and graceful degradation when one or more FE'’s fa|l.iﬂesize and therefore cannot be used to measure throughput.

Typically, when a system is unbalanced to some degree, t . . _
adaptation mechanism will be triggered to make adjustmentsThe numeratorN in Eq. 7, is defined as “the number of
to the mapp|ng from the System's input to output [7] [8] TthW'ShrﬁS |nstead Of the number Of ﬂOWS remapped as in

result is that some flows will be shifted from the most loadefgble | of [8]. Ns is incremented by one each time a flow is
processors to less loaded ones. shifted, or remapped, from one FE to another; it doesn't matter

In adaptation, migration of flows from one FE to another rerilf_this flow has been in the set of flows shifted hitherto. As each
ders some previously cached data in the source FE uselessfyshift can result in a cold-start of the cache in the target
causescold startin the target FE's cache. We call this pheFE, Eq. 7 represents the upper-bound of the cache disturbance
nomenonadaptation disruption Obviously, flow migration is caused by shifting flows. On the other hand, “the number of
harmful to forwarding performance and should be done as ##fows remapped” in Table | of [8] should be understood as the
frequently as possible. Thus in a hash-based parallel forward#ige of the set of flows remapped and therefore does not reflect
system, another feature is desirable; we call it minimum adapf@che disturbance.

tion disruption (MAD). ForNp packets forwarded, adaptation |t is worth noting that theacket sprayingn [7] is proposed

disruption, denoted by, is quantified as follows: to deal with “rare” “emergency” situations when an excessive
flow bundle by itself exceeds the processing power of one FE.
Ng The scheme does naktctively spray to achieve load balance.
¢ = Ny (7)  In addition, both flow reassignment and packet spraying in [7]
operate on bundles instead of individual flows. A bundle by
whereNg is the number of flow-shifts. Thus,< ¢ < 1. definition contains more than one flow. The larger the number

Note that MAD is different from the minimum disruption inof flows shifted, the more disruption is caused to the states of
HRW which describes the desirable behavior of a distributéde FE’s. It is possible that shifting one bundle causes a large
system in the face of partial failure. Redirecting only flows foportion of the target FE cache to be flushed. In contrast, our
a failed FE causes least disruption to the states of other FEjsal is specifically to balance load with minimum disruption.
Adaptation disruption, on the other hand, is caused by flow miVe achieve this goal by identifying and shifting only aggressive
grations among FE’s as a result of load balancing efforts. flows.



¢— hash splitter; the selector gives priority to the decisions of the
load adapter. In this sense, the hash splitter decidedetfailt

— | Fow | _| Lo target FE for every flow.
. Classifier Adapter ||
IPTraffic As noted above, the load balancer functions only when the
o L Selector system is unbalanced, which is decided by the triggering pol-
Splitter icy (see Section V-C). Periodically, the system is checked and
if it is unbalanced, the load balancer is activated; the least
loaded (possibly idle) FE is identified and the high-rate flows
¢7 are shifted to it from their default FE's decided by the hash
splitter. Later even if, as a result of the adaptation, the system
Input Quees becomes balanced and the balancer is inactivated, the flows pre-
viously identified in the flow table are still directed to the FE
l """""" ¢ i assigned by the balancer. This is to prevent unnecessary flow
ToFE's migration.
An important design parameter 5, the size of the bal-
Fig. 3. Load Balancing Packet Scheduler ancer’s flow table. Generally, shifting more aggressive flows,

i.e., having more flows in the table, is more effective as far
_ as load balancing is concerned. Nevertheless, to reduce cost,
B. Design speedup the lookup operation, and minimize adaptation disrup-

Most state-of-the-art schedulers migrate flows without cotion, the flow table should be as small as possible.
sidering their rates, but this is ineffective. As indicated by our Another component in the system that is critical to the suc-
measurements in Section IV, the probability of shifting loweess of the load balancing scheme described above ftothe
rate flows should be high since there are many of them. Shiflassifier(See Fig. 3). The flow classifier monitors the incom-
ing these flows does not help re-balance the system much, ingf traffic to decide which flows are aggressive and should be
causes unnecessary disruption. The high rate flows are fewpsin the balancer’s flow table. We discuss in detail the aggres-
it is unlikely that they would be shifted, but it is usually thessive flow identification procedure in Section VI.
flows that cause trouble [13]. While the scheduler is busy shift-
ing low-rate flows, the high-rate ones keep swamping the over-
loaded processor(s). C. Triggering Policies

The Zipf-like flow size distribution and, in particular, the ) )
small number of dominating addresses, indicate that schedu_|:|_he adapter implements the_sche_dulmg_ scheme that de-
ing the most aggressive flows should be effective in balancifilfleéswhento remap flows (the triggering policyyvhat flows
workload among parallel forwarding processors. Since thefe rémap, andwhereto direct the packets. To effectively
are few aggressive flows, the adaptation disruption should @ghieve load balancing with minimum adaptation disruption,
small. Our scheduler design takes advantage of this observafidf @dapter only schedules packets in the largest flows. Packets
and divides Internet flows into two categories: the aggressiVthe smaller flows are mapped to FE's by the hash scheduler.
and the normal. By applying different forwarding policies to There are multiple choices for deciding when the system is
the two classes of flows, the scheduler achieves load balanciitpalanced and the adapter should be activated to redirect pack-
effectively and efficiently. ets. For example, the adapter can be invoked periodically, i.e.,

Fig. 3 shows the design of our packet scheduler. When tHiggered by a clock after every fixed period of time. This
system is in a balanced state, packets flow through the h&§heme is easy to implement, as it does not require any load
splitter to be assigned to an FE. When the system is unbalandgfprmation from the system. It may not be efficient, however,
the load adapter may decide to override the decisions of & far as minimizing adaptation disruption is concerned since
hash splitter. When making its decisions, the load adapter reférgould shift load unnecessarily, i.e., when the system is not
to a table of high-rate flows developed by the flow classifier. unbalanced.

The hash splitter uses the packet’s destination address as inFhe adapter can also monitor the lengths of the input queues,
put to a hash function. The packet is assigned to the FE whatsgng them as indicators of the workload of the FE's. Remap-
identifier is returned by the hash function. There are sevefing can be triggered by events indicating that the system is un-
possible choices for the hash function. For example, the furfzalanced to some degree, based on the input buffer occupancy,
tion could use the low order bits of the address and calculate the largest queue length, or t68” of the queue length growing
FE as the modulus of the number of FE’s. Alternatively, HRV@bove some pre-defined threshold. The system load condition
could be used to minimize disruption in the case of FE failuregould be checked at every packet arrival. This overhead can be

The load adapter becomes active when the system is unis@Huced by periodic checking. We simulate several triggering
anced. It checks each passing packet to see whether it belopgjécies in Section VII.
to one of the high-rate flows identified by the classifier. If the As another design dimension, the remapping policy decides
packet belongs to one of these flows, the load adapter sets itdevhich processor(s) the largest flows should be migrated. One
be forwarded it to the FE with the shortest queue. Any forwardelution is to redirect all the largest flows to the FE with the
ing decisions made by the load adapter override those from #tertest queue.



VI. DETECTING AGGRESSIVEFLOWS 09

In this section, we describe the mechanism used in the flow

classifier to identify aggressive flows. L
07 ,

A. Definition of Aggressive Flows 08

We define aggressive flows as high-rate flows. Flows that = °5 ;"
are both large and fast are the source of long-term load imbal- ’:'
ance and are most effective when shifted to balance load. These '

Delta

LI IPLS — |

flows are similar to the alpha flows in [12]. In addition, taking 03 UofA -
the bursty nature of Internet traffic into consideration, we also > w w w w w L w  Auckd
classify flows that are smaller in size but are fast enough to o o 3w 43&%&?;@?30 e
cause short-term load imbalance or buffer-overflow as aggres-
sive flows. Fig. 4. Effects ofi’ on A (F = 5)

It is pointed out in [11] that flow size and lifetime are inde-
pendent dimensions. There might be correlation between flow TABLE NI

size and rate but generally, the notion of long-lived flows in  ARRIVAL RATES (NO. OF PACKETS/SECOND) OF FOUR TRACES
most previous studies is not accurate for our purposes. As a re-
sult, short-cut establishment triggering [19] for long-lived flows IPLS UofA SDSC | Auck4
cannot be used to detect aggressive flows. Instead, we need a | 74608.742| 14007.337| 3210.378| 251.394
mechanism that takes into account both the number of packets

and the length of time during which the packets arrive.

high predictability is critical to the success of the flow classi-
fier. Despite the window size, however, experiments show that,
B. Detecting Aggressive Flows the largest flow of an entire trace is almost always identified as
We definewindow size W, as the number of packets oveithe largest flow of every window (the smallégt experimented
which flow information is collected. Therefore, the incoming IWith is 100). And we will see that shifting even only the one

traffic is a sequence of windowsV,, Wa, ..., W,, n — oo, largestflow is very effective in balancing workload.
each containing?” packets. Suppose we are receiving packets
in W;. We find the sef; that contains the largest flows ;. VIl. SIMULATIONS

The number of flows inF; equals to the size of the flow table, | this section, we conduct trace-driven simulations of an

F,|F;| = F. Fy = {}. Atthe end ofi;, we replace the flows gjght-FE system under static hash mapping and adaptive load
in the flow table by those it;. This mechanism benefits frompgajancing schemes. In the former, packets are directed to the
the phenomenon deémporal localityin network traffic. Due Fg's py the hash splitter only and the results serve as perfor-
to thepacket train[24] behavior of network flows, it is highly mance bounds for the adaptive load balancing scheme. For the

possible that flows irF; are also some of the largest ones ovegtter, we simulate three adaptation triggering policies for the
the nexti packets. That i$; N F;11 # {}. balancer.

Letd;, = |F;—1 N F;|. To measure the effect ® on the con-
tinuity of the content of the flow table due to temporal localityy Trace Driven Simulation

we define :
The average packet arrival rateg are measured for the four
A - Yo 6:i/F 8 larger traces (Table I}). IP traffic is well known for its large
- n (8) variability; here)\ serves only as a gross estimation and is used
to derive the service rates for the FE's given some system uti-
where lization p:
Np p-
"Tw A/mo
. . Wi = ——, t=1,...,m. (9)
and Np is the number of packets forwarded during the mea- P

surement. Thud) < A < 1. The larger the value oA\, the
better flow information collected in the current window predict

aggressive flows for the next window. include: the input buffer sizé, the number of FE's1(), the

Small W values are preferred when the input buffer size IS mber of aggressive flows in the flow tabl€, the adapta-
small and load adjustment must be made to reflect the existeﬂge '

n policy, and classifier window siz&8’. We are mainl
of smaller scale, short-term bursty flows. LarfErvalues can policy y

ncern however he eff f schedulin lici
be used for larger buffers where the system can tolerate the Ic():gd cerned, however, about the effects of scheduling policies

imbalance caused by bursts of small flows. Fig. 4 shows the gﬁdkt hel input buffer ZIZ::EO gn tWO. pe;f_o rmance rr_:_er:]trlcs:r;t he
fects of W on A for the first one million entries of the four packetloss ratey) and the adaptation disruptiog)( Through-

: . out the simulationsy = 8, p = .8, andW = 1000.
larger traces in Table | witlh" = 5. The larger the value df/, Sn=8p=28 W 000
the better the current aggressive flows predict the future. ThiSThe FUNET trace does not have arrival time stamp information.

Given a trace (so that is fixed) and an overall service rate
fu), parameters that have major effects on system performance



B. Hash Splitter E. Packet Reordering and Loss

The hash splitter implements the following operation Adaptive load balancing in hash-based distribution schemes
comes at the price of packet reordering. Whenever a flow is
CRC16(DestI P Address)%m shifted from a busy FE to a less loaded one, there is the risk

of packet reordering within this flow. Therefore, the sources of
whereCRC'16 is the 16-bit cyclic redundancy check, is the adaptation disruption are also the sources of potential packet re-
modulo operator, and: is the number of FE’s. According to ordering. Shifting a few aggressive flows minimizes adaptation
previous studies of hash function performance ( [4,6]), the CRiisruption and for the same reason, causes less packet reorder-

is a very good hash function. ing than adaptation schemes that shift flows with no regard to
their rates.
Let L, be a flow in a trace, wher@ < ¢ < |S| andS is the
C. Triggering Policies set that contains all the flows in the trace. IR}; be a packet

We tested three trigaering policies: in L;, where0 < 5 < N; andN; is the number of packets in
ggering p ) L;. LetT; ; be the time that the packét ; is observed at the

» Periodic MappingPM): The adapter schedules aggressivnt port andr’ ; the time that it is observed at the output port.

flows periodically (after each interval a? packets), re- a; the input por‘t,Ti,j < Tyj+1,0 < j < N;. Atthe output

garf(fjles(s), of system ll?r?d Syi;[u|atigr-l|; - The adaoter s i port, however, due to possible packet reorderifjg, might be
« Buffer Occupancy Threshol(BOT): The adapter is in- larger tharir? ;. . If

voked if the buffer is filled above some percentage.
o Maximum Queue Length ThreshdMQLT): The adapter 1 if T..>T!.
is invoked if the length of the largest queue grows above (i, j) = { ' A

. 0 otherwise
some pre-defined threshold, also expressed as a percentage

of the total buffer size. then the packet reordering ral® for Np packets forwarded is
For comparison purposes, we also simulated hash-based load
splitting without adaptation. For BOT and MQLT, periodic S S (i)
checking of the system workload condition is implied; for com- R, = Np

parison purposes, we would assume this period is the same as

that in PM. Thus, the results for PM set upper bounds on theln our simulations, there are two reasons for packet loss.

frequency by which the aggressive flows are shifted from oférst, the load may not be properly balanced among the FE's.

FE to another and the amount of adaptation disruption for BOThe service capability of the whole system is adequate, but

and MQLT. while some FE’s are busy forwarding, other FE’s can be idling.
Therefore, the system is not utilized at its full potential. Over
time, the number of packets in the busy FE's queues increases

D. Adaptation Disruption to the limit of the buffer size and newly arriving packets are

Two sources in our load balancing scheduler contribute méjsrppped. The second reason for _packet loss has I|tt_Ie to do

with scheduling schemes: the service rate of each FE is calcu-

to adaptation disruption (AD). . . )
. p . .p (AD) . lated based on thaveragearrival rate of packets; during traffic
First is the decision of the adapter to re-map aggressive floy)vl?

to the least loaded FE. If the flows in the flow table are not rsts, packet arrival rates can be much more than the system
currently destined to the target FE, flow-shifts occur. We calf" handle.
this type of flow-shiftexplicit disruption(ED). ED ~ Ng x F.

Second, after processing a window of packets, the flow clds- Simulation Results

sifier replaces the content of the current flow table with the Figs. 5 and Fig. 6 show packet loss rates of different adap-
largest flows calculated during the past window. This impliGation policies under varying buffer sizes for the UofA and the
itly moves the flows that were not in the table from their currenb| s traces. For both traces. the hash-only scheme (no adapta-
destination FE, determined by the hash splitter, to the FE dgsp) has the highest loss rate and, moreover, increasing buffer
cided by the adapter and, at the same time, shifts the replaggd, joes not help. On the other hand, the three adaptation

flows to the FE's determined by the splitter. Flow-shifting:nemes all respond positively to buffer increases. PM achieves
caused by the flow classifier is calledplicit disruption(ID).  ihe pest loss rates compared to BOT and MQLT.

When the classifier updates the content of the flow table at thq:ig. 7 shows that changes in buffer size have very slight ef-

end of windowi, the total number of flows to be shifted is¢e 15 o adaptation disruption for the three adaptation schemes,

|Fi—1 U Fi| — |F;—1 N F3|. For the PM balancing policy, except when the sizes are small. The hash-only policy does not
n shift flows from one FE to another and therefore does not in-

1D = Z \F;_y UF,| — |Fy_1 N F}| cur any.adap.tation_ disruption. The PM strategy ha_s the highest

adaptation disruption and this explains why it achieves the the

best loss rate: it re-maps the aggressive flow much more fre-
For the other two adaptive policies, the balancer is not alwaggently than BOT and MQLT. The difference in adaptation dis-
on, and therefore theirD values should be smaller. ruption between MQLT and BOT is small; it seems that MQLT

i=1
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Fig. 8. Loss Rate vs Checking Period (The buffer size is 400 packets. The
other parameters are the same with those of Fig. 5)

Fig. 5. Loss Rate vs Buffer Size (For PM, BOT, and MQLT, the system load

condition checking is done every 20 packets. For BOT, the threshold is 80

percent of the buffer size. For the MQLT, the threshold is 30 percent of the 005 A v—
buffer size. There are eight FE's and the system utilizatioa 0.8. For this 0.045 MR~
simulation, the number of aggressive flows in the flow table is 1. 0.04 i
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8)
0.05 - A
””” S achieves better loss rates (Fig. 5) than BOT at the cost of a little
% 200 400 600 800 1000 more adaption disruption.
uffer Si ke . . .. .
Buffer Size (Packets) An important parameter of the adaptation policies is the
_ _ _ checking period. It controls the system’s responsiveness to load
Fig. 6. Loss Rate vs Buffer Size (with the IPLS trace) imbalance. The smaller the interval, the more quickly the sys-
tem responds to load imbalance; this leads to lower packet loss
rate. On the other hand, system load checking is one of the
major parts of the adaptation overhead and could cause more
adaptation disruption. Frequent load checking also consumes
0.06 ‘ more CPU cycles.
No Adaptation —— . . .
g Figs. 8 and 9 show how the checking interval affects loss
00 " MOLT -7 rate and adaptation disruption. Generally, the decrease in re-
5 oml R B sponsiveness to load imbalance leads to more packet loss. Fig.
g ‘ 8 shows that compared with PM and MQLT, BOT (wé per-
8 o . cent occupancy threshold value) is more susceptible to check-
% ing period increases. Fig. 9 shows that increasing the checking
g or 1 period is effective in reducing adaptation disruption.
001 - J Simulations with other traces show similar trends to the
above results for the UofA and IPLS traces. Differences in scale
| | | | 1 1t 1 1 '_
o5 - ~ - 0 000 are caused by the peculiarities of the largest flows in the indi

Buffer Size (Packets)

vidual traces. For example, as shown in Table I, the largest
flow in the Auck4 trace is not significantly larger than the sec-

Fig. 7. Adaptation Disruption vs Buffer Size (The same setting with Fig. 50nd, which is unlike the UofA trace where a single largest flow

dominates. This implies that, for the Auck4 trace, scheduling
only the one largest flow might not be able to spread load evenly
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Fig. 10. The Effectiveness of Scheduling More Aggressive Flows (The chedkig. 12. The Effects of Scheduling More Flows on Packet Reordering (with
ing period is 20 and the buffer size is 400. The other parameters are the sa@ineesame setting as Fig. 10)
with those in Fig. 5

TABLE IV
0.6 e v— COMPARISON BETWEENSHIFTING ONLY THE MOSTAGGRESSIVEFLOW
os | M%ﬂ AND SHIFTING ONLY LESSAGGRESSIVEONES
A Simulation | Auckd | Auckd [ IPLS | IPLS
S o3f 7 MAF LAF MAF LAF
g No. of Flows | 1 14 1 3
2 0zr ] n 176 A77 .0260 | .0218
ol 7 ¢ 0417 | .688 | .0364 | .110
e Rr .0581 | .111 .00958 | .0888
o; -l ‘2 4‘1 ‘6 1‘3 - C’V[qj] 213 .250 114 127
No. of Aggressive Flows
Simulation SDSC | SDSC | UofA | UofA
Fig. 11. The Effects of Scheduling More Flows on Adaptation Disruption MAF LAF MAF LAF
(with the same setting as Fig. 10) No. of Flows | 1 2 1 500
n 0277 | .0239 | 0.0367| .111
over multiple processors. This can be solved partly by adding ¢ 0345 | .0716 | .0443 | 25.2
more flows into the flow table at the cost of more adaptation Rr :00615| .00764| .0336 | .0503
disruption. CV[qj] .0907 | .0776 | .167 .285

In the following simulations, we experiment with the Auck4
trace to study the effect of scheduling a larger number of ag-
gressive flows on packet loss rate, adaptation disruption, &#igssive flows, we compare the results of two simulations:
packet reordering. The results are shown in Figs. 10, 11, a¥feheduling only the most aggressive flow (MAF) and schedul-
12. In each figure, the axis denotes the number of most agli"d only a number of less aggressive flows (LAF) to achieve
gressive flows. That is; = 1 represents the case when On|);imilar loss rates as with shifting MAF. In the simulations, the
the most aggressive flow in the trace is used in load balancifdAF is the largest flow identified in the flow table by the ag-
z = 2 means the largest two flows are scheduled, and so ongressive flow detection mechanism described in Section VI.

Fig. 10 shows the effectiveness of scheduling more aggrddie LAF's are the second largest, the third largest, etc., in the
sive flows in reducing loss rates for the Auck4 trace for thgame flow table. We simulate the PM policy with a 20-packet
three adaptive policies. It seems that for a given configurébecking period.
tion, beyond a certain number of aggressive flows, the benefit ofNote that the simulations for each trace are designed to
scheduling more flows becomes negligible. On the other hagghieve similar loss rates. If system throughput can be ex-
as shown in Fig. 11, adaptation disruption increases lineafiyessed as forwarding rate, the throughput achieved by the two
with the number of flows scheduled. Therefore, it is both inscheduling strategies is similar, too. What we want to show
portant and desirable to limit the number of flows in the flovare the differences in the CV, the adaptation disruption, and the
table. reordering rate under the two schemes for each trace.

Fig. 12 shows simulation results of packet reordering ratesTable IV summarizes the results for four traces. With similar
for the Auck4 trace. Like adaptation disruption, packet reordgacket loss rates)f, MAF scheduling always causes less adap-
ing is affected mainly by the number of flows shifted. Amongation disruption ) and packet reorders(.). For the Auck4,
the three triggering policies, BOT performs best. IPLS, UofA traces, MAF scheduling also balances load bet-

To further illustrate the advantages of shifting the most ater, as shown by the smaller CV. More than one LAF is always
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needed to achieve similar packet loss rates as MAF schedulirRgr example, WWW server cluster systems could benefit from
The least number of LAF's needed is two, as in the SDSC cdsash-based load distribution schemes, e.g., HRW, to improve
where scheduling LAF's achieves a lower miss rate@hdg;]. cache hit rate and to reduce response time. It is pointed out in
One reason might be that in the SDSC trace, the MAF idenfb], however, that requests for a hot object alone could present
fied by the mechanism in Section VI only accounts for a smathough load to swamp a server. Such systems could implement
portion of the total traffic, not significant enough for the MAFobjectreplicationfor the most popular objects so that these ob-
scheduling strategy to outperform LAF scheduling by a largects have copies on more than one servers and object space

margin. The other extreme is the UofA trace, where the MAgartition by hashing for the other not-so-popular objects so that
by itself represents around 16 per cent of the aggregate trafiech server only hosts a partition of these objects. A load dis-
when it is scheduled onto an FE, even if the rest of the traffictisbution scheme similar to the one outlined in this paper could
spread evenly among the other seven FE’s (each 12 per cetfign be used to balance the load. For such systems, a central-

the system is still not perfectly balanced.

It is important to note that the arrival ratefor the Auck4
trace (see Table Ill) used to decide the FE service rates (Eq. 9)
in the simulations of Figs. 10, 11, and 12 is #eragerate
over five hours. Arrival rates during shorter intervals may be
much higher. For example, the arrival rate for the first one m
lion packets in the Auck4 trace is3 times the average rate.
The service rate of the system, however, is dn3p times the
average arrival rate. In such situations, packet losses occur et
gardless of the scheduling scheme. Therefore, under similar
adaptation configurations, differences in arrival rate variabilp
ity account for different loss rates, adaptation disruption, and
packet reordering rates, for different traces. 3]

VIIl. CONCLUSIONS

The highly skewed Internet flow size distribution has pro4s]
found implications for Internet forwarding system design. First,
we have proved in this paper that the Zipf-like flow popularity[s]
distribution, which has infinite mean and variance, is a major
source of load imbalance in a hash-based packet dispatchip
scheme. Second, to measure the efficiency of adaptive schedﬁ?—
ing schemes, we introduce a new metric, the adaptation dis-
ruption, which quantifies the effect of adaptive algorithms orl’]
cache performance and is an important touchstone for evalu-
ating overall parallel forwarding system performance. Third,
flow-level Internet traffic characterization inspires the classil®!
fication of flows into two categories: the aggressive and thg
normal. By applying different scheduling policies to the two
classes, we have been able to build a highly effective and et
cient scheduler that can be used in parallel Internet forwardipg)
devices.

Instead of migrating flows, regardless of their nature, fror[rﬂz]
heavily load FE’s to less loaded ones, our scheduler shifts only
a few aggressive flows when the system is unbalanced. Ma.
nipulating these flows is effective because they are the mgli]%):fﬂ
source of load imbalance. At the same time, since their numbe]
is small, migrating only these flows has the potential to cau %]
little adaptation disruption to the FE’s cache. We expect mu
higher disruption in adaptive load balancing schemes that do
not take flow size distribution into account. Experiments sh
that due to temporal locality in Internet traffic, the aggressive
flows can be readily identified, which indicates that the prd7]
posed load balancer is highly feasible. [18]

Highly skewed popularity distributions exist in workloads for
many network systems. Dividing these workloads into two or
more categories and treating each group differently is a genelra
idea that could be effective in improving system performance.

19] A. Feldmann, J. Rexford, R. &eres,

ized scheduling mechanism is essential.
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