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1 Introduction

The SICLE version described in this manual is identified in the title. Information con-
tained herein is subject to change in future versions of the package.

This manual makes many references to SIDE, which is described in a separate docu-
ment. Although it may be useful to become acquainted with SIDE before using SICLE,
there is no absolute need to do so. It is assumed, however, that the reader is familiar with
Tcl.

1.1 Purpose

This manual describes SICLE—a Tcl-based software package for developing and running
reactive scripts. The primary purpose of SICLE was to control reactive systems under-
stood as collections of physical sensors and actuators. Conceptually, and to a large extent
functionally, SICLE is a re-implementation of SIDE in a scripting language.1 However,
owing to the nature of Tcl (and scripting in general), SICLE, in comparison to SIDE,
offers some extra features:

• SICLE is ideal for hacking quick ad-hoc solutions

• SICLE is naturally and trivially portable to all environments that support Tcl

• in a sense, SICLE is more powerful than SIDE because it can execute dynamically
created (e.g., uploaded) code

One drawback of SICLE with respect to SIDE is the slower execution speed. This need
not be a serious problem in many applications. Besides, serious applications may consist
of several modules, some of them implemented in SICLE and some in SIDE. SICLE

follows essentially the same programming paradigm as SIDE (lightweight uninterruptible
threads looking like fast interrupt service routines with multiple entries), and the same
communication paradigm. Therefore, SICLE programs can be naturally interfaced with
SIDE programs via TCP/IP ports.

The primary purpose of SICLE was implementing control programs for reactive sys-
tems in not so time-critical applications. To this end, SICLE comes equipped with an
interface to SDS sensors and X10 modules, including a built-in authenticating server ac-
cepting remote sensor commands on a TCP/IP port. Thus, it can be directly used to
control X10-compliant home appliances and industrial SDS networks, possibly over the
Internet.

Another class of applications for SICLE include lightweight servers, e.g., for web
databases. The package has been used to implement a web database for processing appli-
cations for graduate studies at the Computing Science Department of the UofA.

1The name SICLE comes from combining “side” with “tickle” (which is the generally accepted way of
pronouncing “Tcl”).
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1.2 Reactive systems

By a reactive system we understand any physical system that responds to external stim-
uli and triggers events that may be perceived by its observer. This definition is wide
enough to encompass all physical devices that exhibit some organized behavior, as well as
interconnections of such devices into possibly large networks of dynamic and interacting
components. One example of such a network is a modern factory in which manufactur-
ing equipment is interconnected and organized around a common goal—the production of
some goods.

For the purpose of computer control and algorithmic description, a reactive system
is viewed as a communication network equipped with some processing power, whose ter-
minal devices are of two basic types: sensors and actuators—see figure 1. The sensors
perceive the world and transform this perception into events. Those events propagate to
the processing agents of the network (i.e., programs run on computers), where they are
interpreted and transformed into messages sent to the actuators. In response to those
messages, the actuators perform specific physical actions that make the system behave in
a prescribed way.

SENSORS ACTUATORS

SICLE PROCESSES

ENVIRONMENT

Figure 1: A reactive system.

One immediate application area for SICLE is any physical system that can be repre-
sented by a network of sensors and actuators. The primary goal of SICLE is to provide
a platform for developing and executing control programs for networks of sensors and
actuators that may be interconnected or accessed via the Internet.

1.3 Philosophy of SICLE

SICLE offers a collection of Tcl functions (a Tcl package) for implementing multi-threaded
reactive programs. The threads of those programs look very similar to SIDE processes
and follow essentially the same idea. Thus, following the tradition, we will call them
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“processes,” although they rather resemble uninterruptible interrupt service routines re-
sponding to events.

SICLE threads are objects, which means that SICLE is object-oriented, at least when
needed. At the same time, all it provides is a set of Tcl functions, and Tcl itself does not
look like an object-oriented language. Although there exist object-oriented extensions of
Tcl that could be used as the basis for developing our platform, we decided to do it our
private way and base SICLE on pure Tcl. One reason for this was our conviction that
scripting languages need not (and should not) be inherently object-oriented.

The object-orientedness of SICLE only comes into play when needed, and the chunks
of code that need not formally look like methods belonging to some specific classes are
in fact (global) functions. One may say that C++ gives us the same paradigm, so there
is nothing new in this approach. However, owing to the associative way of implementing
objects in SICLE, one can have a single (formally global) function that can be invoked
as a method of many formally different objects. This gives us a significant amount of
flexibility and, combined with dynamic binding of constructors and destructors, results in
an amazingly simple, powerful, and unconstrained scripting flavor of object-orientedness.

A program in SICLE can be implemented as a single multithreaded, event-driven
module, or as a set of modules run on independent (possibly diverse) machines connected
via the Internet. Some of those modules (those for which execution time is critical) may be
implemented in SIDE. All the comments from the SIDE manual regarding the character
of a module and its ability to communicate with other modules (or with the outside word)
also apply to SICLE. But in contrast to SIDE, SICLE does not have the simulation
mode: scripting simulation does not seem to make a lot of sense.

1.4 Installing and using SICLE

SICLE must be installed as a Tcl package before it can be used. To do it, you have to
perform the following steps:

1. Unpack the SICLE archive (file siclexx.tar.gz) wherever convenient.

2. Move to directory siclexx (xx stands for the version number).

3. Edit the Makefile and set PACKDIR to the directory where Tcl packages are kept.

4. Execute make all followed by make install. The second command must be exe-
cuted as root.

This will in fact install two packages called siclef and sicled. They are functionally
identical, except that the second one is to be used for debugging, while the first one is a
“production” version of the package. The primary difference is in execution time. The
debugging variant is slower because it validates arguments of SICLE functions and keeps
track of a number of most recent function calls.
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To get access to SICLE functions, you have to require one of the two packages, e.g.,
with the following Tcl statement:

package require sicled 1.0

You can write siclef instead of sicled to use the faster version.

2 Objects in SICLE

Not all features of SICLE must be used in all programs. For example, the package
implements DES encryption/decryption with salt, which is intended for authentication.
This feature can be used alone (it is visible as two functions presented in section 5.3.1) in
any Tcl program. Similarly, SICLE objects constitute a logically separate concept. They
can be used in any Tcl program, possibly one that doesn’t care about other features, like
processes or sensors.

2.1 Object type declaration

A program in Tcl is entirely dynamic, which means that there are no declarations with a
static meaning. However, some SICLE (and Tcl) operations resemble declarations in that
they assign interpretation to the subsequent occurrences of some symbols in the program.
Standard Tcl functions proc, global, and upvar fall into this category.

The following SICLE operation declares an object type:

class typename arglist constructor destructor

where the only required argument is typename (the remaining arguments default to empty
strings). Following the execution of this operation, typename becomes a legitimate object
type.

Argument arglist gives the formal list of arguments to be passed to the constructor
(represented by constructor). It makes no sense to specify arglist if constructor is empty.
The constructor is a Tcl program to be executed when an object of the declared type is
created (section 2.3). Similarly, the destructor is a program executed when the object is
destroyed (section 2.3). Note that destructors have no arguments.

Examples

Consider the following type declaration:

class Complex { re im } {

useown Re Im

set Re $re

set Im $im

}
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which defines an object type with a constructor but with no destructor. We can easily
guess that type is intended to represent complex numbers.

Here we have another type declaration:

class Item { what } {

useown MyStuff

global List

set MyStuff $what

set List($This) ""

} {

global List

useown

unset List($This)

}

which defines both a constructor and a destructor. Operation useown is described in sec-
tion 2.5.2.

A constructor/destructor is executed as a function invoked at the level at which the oper-
ation creating/destroying the object was performed. The actual arguments of the create
operation (section 2.3) are passed to the constructor according to the formal specification
at class declaration.

Similar to a regular Tcl function, the last argument of a constructor can be args which
stands for the list of all the remaining arguments specified at object creation. This way,
constructors can accept actual argument lists of variable size.

There is an operation to check whether a given name represents a valid (declared)
object type. The function

defined class typename

returns 1 if the specified type name corresponds to a declared class type, and 0 other-
wise. Operation defined can verify several other predicates about objects, object types,
attributes, methods, etc. Its full semantics is described in section 6.4.

2.2 Type qualification

Formally, there is no type inheritance in SICLE. Regardless of its formal type, a SICLE

object can be built of whatever attributes we decide to associate with it. Those attributes
can be referenced in a uniform way by any function, just by specifying the object handle
and the attribute name.

In some cases, however, we would like to be able to say that objects of some type are
to be treated in some special standard way. For example, a SICLE process (see section 3)
is an object of any type that has been “qualified” as a process type. Similarly, a SICLE
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mailbox (section 4.3) is an object of any type qualified to be a mailbox type. In a sense,
type qualification works like reverse inheritance: the current structure of the qualified
type is augmented by some standard attributes and operations (methods) that all types
qualified this way are expected to have. For example, each type qualified as “process”
receives the following attributes: State, Message, Priority, and one extra constructor
(see section 2.4) that starts the process up upon creation.

The following simple tool marks a type as qualified:

qualify typename qualifier

where typename is the name of the qualified type, and qualifier is the qualification. At
this level, the qualification is formal and consists exclusively in marking the type as being
qualified to the specified qualifier (which is just a name). The built-in operations for
declaring processes, mailboxes, and other qualified types call qualify, but they also make
sure that the qualified types receive their special attributes and methods that come with
the qualification.

There exist variants of defined to check whether a given type (or object) is qualified.
The following function:

defined qualify typename qualifier

returns 1 if the given object type is qualified to the specified qualifier, and 0 otherwise. By
replacing qualify with is, one can put an object handle (section 2.3) in place of typename
and then the operation will verify the type qualification of the indicated object.

2.3 Object creation and destruction

An object is created with the following function:

create typename arg1 ... argn

where typename is the type name of the created object, and arg1 ... argn represent the
constructor arguments. Their number must coincide with the number of formal arguments
for the constructor (section 2.1) or multiple constructors (section 2.4) defined for the object
type.

The function returns an object handle, which is a string acting as a “pointer” to the
object. Different objects are guaranteed to have different handles. The handles are never
recycled, even if the objects are destroyed; therefore, they can be used as absolutely unique
identifiers of objects throughout the entire execution time of a program.

The following operation deletes an object:

delete handle
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where the argument specifies the object handle. The argument can be absent in which
case the operation deletes the current object (section 2.5.2).

Examples

With the following operation, we create a complex number described by the object type
from section 2.1:

set com [create Complex 1.0 1.0]

Then, the following operation will destroy it:

delete $com

When an object is deallocated, all its attributes (section 2.5.2) are destroyed and cease to
exist. However, if some of those attributes store object handles, the objects pointed to by
those handles are not destroyed.

The handle of a deleted object becomes invalid. An attempt to reference such an object
(e.g., to get its attribute or invoke its method—section 2.5) will trigger an exception. There
is a way to check whether an object handle points to an existing object. The following
variant of defined (section 6.4):

defined valid handle

returns 1 if the handle points to an existing object, and 0 otherwise.

Using defined, it is also possible to determine whether an object handle points to an
existing object of a given type. This is accomplished by the following variant:

defined belongs handle type

which returns 1 if the object pointed to by the handle exists and its type is type, and 0
otherwise.

Another useful function is

gettype handle type

which returns the name of the object’s type or an empty string, if the specified handle
does not point to an object.
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2.4 Dynamically added constructors and destructors

It is possible to add new constructors and destructors to an object type after the object
type has been declared. Specifically, a new constructor is added by the following operation:

constructor typename arglist constr

Similarly, a new destructor is added by

destructor typename constr

All arguments are required. In both cases, the first argument identifies the object type
to which the constructor/destructor is added, and the last argument specifies its code.

Semantically, multiple constructors are put into a list and executed in the (dynamic)
order of their definition. The multiple argument lists are concatenated in the same order;
the actual argument list specified at create must match the combined argument list of all
constructors. If args is used as the last argument of a constructor (to represent a variable
length trailer of the argument list), it must be the last constructor defined for the given
object type.

Multiple destructors are executed in the reverse order of their definition, i.e., the last
defined destructor is executed first.

Examples

Let us add a constructor and destructor for the Item type from section 2.1.

constructor Item { slist } {

useown SecondList

upvar $slist SList

set SList($This) ""

set SecondList $slist

}

destructor Item {

useown SecondList

global $SecondList

unset ${SecondList}($This)

}

The meaning of This and useown is described in section 2.5.2. We can guess that the
second constructor adds the handle to the object to a second list (an array) whose name
is specified in the argument. The destructor just removes that entry.

The right way to create an object of type Item is to specify two constructor arguments
at create, e.g.,
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set NewItem [create Item $Stuff KeepTrack]

where KeepTrack is an array.

Using defined (see section 6.4), one can check whether a given object type defines
constructors and/or destructors. The operations

defined constructor typename
defined destructor typename

return 1, if there exist constructors/destructors for the specified type, and 0 otherwise.

2.5 Object methods and attributes

There is no need to specify (declare) all attributes associated with an object when the
object type is declared. Objects in SICLE are not implemented as chunks of memory
with preallocated space to hold their attributes, but rather as abstract and necessarily
untyped baskets that can be filled with attributes as needed. In other words, attributes
are associated with objects dynamically, as they are introduced in the program. It is quite
possible to have two instances of formally the same object type with completely different
and unrelated sets of attributes.

2.5.1 Methods

An object method is a function associated with a specific object type. This association is
established dynamically by performing the following operation:

method typename methodname arglist body

All arguments are required. The operation associates a method named methodname,
whose formal arguments and body are specified by the last two arguments, with the object
type specified as the first argument.

Example

This is a sample (argument-less) method associated with type Complex defined in sec-
tion 2.1:

method Complex module { } {

useown Re Im

return [expr sqrt (Re*Re + Im*Im)]

}

There are two ways to call a method: one with the invoke operation,
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invoke handle methodname arg1 ... argn

and the other with ask,

ask methodname arg1 ... argn

The second style takes no object handle and assumes that the method being invoked
belongs to the current object (see section 2.5.2).

Constructors and destructors can be viewed as special (unnamed) methods that are in-
voked automatically under certain circumstances.

Using defined (section 6.4), it is possible to check whether a specific method is defined
for a given type or object. The following operation:

defined method typename methodname

returns 1 if the specified method is defined for objects of the indicated type, and 0 other-
wise. Given an object handle (rather than object type), the following function:

defined callable handle methodname

returns 1 if the object pointed to by the handle exists and its type defines the indicated
method, and 0 otherwise.

The following alternative to invoke:

implore handle methodname arg1 ... argn

does the same job as invoke, except that it does not trigger an exception if the called
method does not exist.

To see a possible application of this feature, consider a function whose role is to process
objects belonging to several different, albeit similar, types. Note that in SICLE, where
object attributes are associative rather than strongly typed into the objects, objects of
different types may be processed by the same functions, as long as these functions restrict
themselves to using only those attributes and methods that are the same for all the objects
being processed. This is why inheritance is not much needed in SICLE: we may live
quite comfortably without it, especially, if we avoid introducing unnecessary restrictions.
Occasionally we may get into a situation where some objects define a specific method (e.g.,
for preprocessing or initialization), whereas some others do not (e.g., because they don’t
need it). By using implore instead of invoke to call such a method we make sure that it
only gets called if it exists; otherwise, the call is quietly ignored.

At any moment, while a SICLE program is being executed, it either is within some
object or not. At the beginning, when the program starts, it clearly isn’t in any object.
When an object is created (by create—section 2.3), the object’s constructor executes
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within the created object. Similarly, when an object method is invoked (by invoke—
section 2.5.1), it executes within the object pointed to by the handle. This is exactly how
it happens in a traditional object oriented language, e.g., C++.

However, in SICLE, when you call any (non-method) function while within an object,
the function itself will execute within the same object. The primary difference between
a method and a regular function in SICLE is that a method is always associated with a
specific object type; thus, you may have several different methods with the same name
associated with different object types. It makes no sense to call a method without speci-
fying explicitly (invoke) or implicitly (ask) the object type to which the method belongs.
On the other hand, a function can be called anywhere and it is always the same function
regardless of the context.

Whenever a method is invoked (section 2.5.1), and the specified handle identifies an
object different from the current object, the current object is pushed on the stack and a
new current object is assumed. When the method eventually returns, the previous current
object is popped from the stack and it becomes the present current object. If there was
no current object underneath (i.e., the method returns to level 0), current object becomes
undefined.

One more feature somewhat related to methods is the possibility to change the notion
of current object without actually invoking a method. By executing

enter handle

we put the current object on the stack and assume the context of the object pointed to
by the handle. To revert to the previous current object, execute leave (which takes no
arguments).

2.5.2 Attributes

At any moment when current object is defined (section 2.5.1), the following operation is
legitimate:

useown att1 ... attn

where att1 ... attn identify some attributes of the current object. These attributes become
visible (they can be referenced as regular local variables) until the function or method that
performed useown returns, or until their names are subsumed by another useown, use (see
section 2.5.3), upvar, global, etc. Thus, the operation has essentially the same meaning
as global, except that instead of specifying global variables, it specifies the attributes of
the current object to be visible from the scope of the present function.

Besides the indicated list of attributes, useown makes one more variable visible to the
current function or method. This variable is called This and it represents the handle to
the current object. Thus, it makes sense to execute useown without arguments.
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We have seen examples of useown in sections 2.1 and 2.4. Notably, the operation can be
used anywhere (not only in a method, constructor, or destructor), as long as current object
is defined. In particular, any function called from a method can access the attributes of
the current object in exactly the same way as the method itself.

2.5.3 Other ways of referencing attributes

Sometimes useown is insufficient, e.g., how to reference an attribute of an object that
doesn’t happen to be the current object at the moment? Given an object handle, the
following two operations can be used for this purpose:

getattr handle attname
setattr handle attname value

The first operation is a function that returns the current value of the attribute whose
name is specified as the second argument. Of course, this name can identify an array
element. With the second operation, the attribute specified by the second argument is set
to the third argument.

Example

The following method of a hypothetical type QueueItem locates the end of the indicated
queue of items and appends the current object at the end:

method QueueItem append { iqueue } {

upvar $iqueue ItemQueue

useown Next

set Next ""

if { $ItemQueue == "" } {

# the queue is empty

set ItemQueue $This

} else {

set previous $ItemQueue

while { [getattr $previous Next] != "" } {

set previous [getattr $previous Next]

}

setattr $previous Next $This

}

}

A getattr performed on an undefined attribute will trigger an exception. There is a
variant of defined (section 6.4) checking whether a specific attribute is defined for an
object (similar to info exists for regular variables). The following function:
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defined attribute handle attname

returns 1 is the attribute attname is defined for the object pointed to by handle, and 0
otherwise.

In some circumstances, it may be convenient to use the following function:

checkattr handle attname

which works exactly as getattr, except that it returns an empty string (rather than
triggering and exception) if the referenced attribute doesn’t exist.

Referencing many attributes of the same non-current object with getattr and setattr

may be inconvenient. The following operation:

use handle att1 ... attn

is very similar to useown, except that the attributes are from the object pointed to by
the handle. Another difference is that, in contrast to useown, use does not define This

(section 2.5.2).

Example

The following function copies some attributes of one object to another:

proc copyit { o1 o2 } {

use $o1 Width Height Depth

use $o2 Wi Hi Dp

set Wi $Width

set Hi $Height

set Dp $Depth

}

The above example is simple although somewhat artificial. If the names of the relevant
attributes were the same in both objects (a more likely scenario) we couldn’t get away
so easily. One can always use getattr and setattr in such circumstances, but it is also
possible to assign different local names to the attributes. This is accomplished by the
following operation:

usealias handle atlist allist

where atlist is the list of attributes to become visible, and allist is the list of local aliases
under which they should appear. The two lists must have the same number of items.

Example

Now we can rewrite the above example as follows:
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proc copyit { o1 o2 } {

usealias $o1 { Width Height Depth } { W1 H1 D1 }

usealias $o2 { Width Height Depth } { W2 H2 D2 }

set W2 $W1

set H2 $H1

set D2 $D1

}

As we said before, it is not uncommon for different objects belonging to the same type to
consist of quite different sets of attributes. It is possible to get the list of all attributes
associated with a given object with the help of the following function:

attributes handle

The argument is optional and it defaults to an implicit handle to the current object.
One should be warned that not all attributes occurring on the list returned by attributes

must have their values defined. For example, when an attribute appears on the use or
useown list, it becomes associated with the object (and its name will appear on the list
returned by attributes) even if it is never assigned a value. An array is treated as a
single attribute, i.e., only the array’s name appears on the list.

Example

This is the way to make all the already existing attributes of the current object locally
visible:

useown [attributes]

3 Processes

Using the tradition of SIDE and its predecessors SMURPH and LANSF, we will call
SICLE threads “processes,” although this name may appear somewhat exaggerated.
SICLE processes are in fact simple and uninterruptible co-routines with implicit control
transfer, which makes them appear as independent, possibly communicating, threads.

Usually, the code of a process is structured as a finite state machine with clearly visible
states represented by multiple cases of a switch statement. A process is typically dormant
most of the time awaiting some events. The occurrence of the earliest of them wakes the
process up in a specific prescribed state. Then the process performs some operations and
goes back to sleep indicating the events that will wake it up in the future.

Thus a process can be viewed as a conceptually fast interrupt service routine with a re-
programmable configuration of serviced interrupts. Those interrupts, i.e., waking events,
may arrive from other processes, from timers, and also from external agents like peripheral
devices or networking ports.
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3.1 Using processes

As we mentioned earlier, a program requesting the SICLE package is not required to use
all its features. In particular, for as long as the program doesn’t want to use processes,
it doesn’t have to organize itself in any special way. All the tools for manipulating and
accessing objects described in section 2 are freely usable this way, i.e., as Tcl functions
callable in a straightforward way from a straightforward Tcl program.

Things somewhat change when we decide to use SICLE processes. As multiple pro-
cesses can co-exist at any given moment, they require a “kernel” of sorts responsible for
scheduling them and interpreting their so-called wait requests. At some point, the pro-
gram must enable the kernel, declaring that it has initialized itself, i.e., created some
initial configuration of processes, and the rest of its activities are to be carried out by
those processes.

A program that intends to use processes should execute the following operation:

sicle arg

before creating the first process. Although sicle is not required to be the first statement
of the program, it is safe and natural to put it at the very beginning, immediately after
package require (section 1.4).

If the (optional) argument of sicle contains the string sensors, it switches on the
initialization of the built-in interface to sensors and actuators (see section 5). This interface
consists of a set of functions interpreting the contents of the sensor map file and a daemon
making operations on sensors accessible remotely via a TCP/IP port.

Having created an initial configuration of processes, the program should execute

kernel

which only makes sense as the last statement of the program. The operation never returns:
it enters the kernel’s event loop to interpret events in the system and schedule the processes.

3.2 Process declaration, creation and destruction

A processes is an object whose type has been qualified (section 2.2) as “process.” This is
accomplished with the following operation:

process typename code

where typename is an unqualified object type and code is the body of the process code
method.

Example

Let us define a simple process that will wake up every prescribed interval and write a
line of text to the standard output. We start with the following type definition:
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class Alarm { delay } {

useown Delay

# convert the delay to milliseconds

set Delay [expr 1000 * $delay]

}

Typically, the basic type of a process describes the initialized attributes of the process
and provides a constructor to initialize them.

Now we can say that Alarm is actually a process type:

process Alarm {

global Timer

useown Delay

puts stdout "Alarm awakened"

wait $Timer $Delay

}

We can create our process in the following way:

set AHandle [create Alarm 10]

The process code method will write a message to the standard output, then call wait
and exit. We say that the process “issues a wait request to the timer”—to be awakened
$Delay milliseconds (10 seconds) after the current moment. At that time, the process
code method will be executed again.

Operation process adds one constructor to the list of constructors of the qualified type.
This constructor accepts one optional argument that specifies the so-called “startup pri-
ority” of the process (see section 3.3.1). The legitimate values of this argument are 0 and
1 (alternatively low and high), which stand for low and high startup priority. The default
value of startup priority is 0.

Every process also receives three extra attributes which are primarily intended to
describe the process’s waking environment. One of them, called State, identifies the
current state of the process viewed as a finite-state machine. When the process code
method is invoked for the first time (immediately after process creation), the value of
State is Start.

A process is terminated by executing delete on its object handle. Such a process is
stopped and discarded from the system. Note that a process can terminate itself this way
(i.e., it is legal to deallocate the process object from its code method), but it can also be
terminated by another process.

Example

Let us modify the process from the previous example in such a way that it will wake



3.3 Process operation 17

up only a prescribed number of times and then terminate itself. This is how it can be
done:

class Alarm { delay ntimes } {

useown Delay NTimes

set Delay [expr 1000 * $delay]

set NTimes $ntimes

}

process Alarm {

global Timer

useown Delay NTimes

puts stdout "Alarm awakened"

incr NTimes -1

if { $NTimes } {

wait $Timer $Delay

} else {

delete $This

}

}

In fact, the delete operation is superfluous because a process that doesn’t specify a waking
condition before returning from its code method is effectively terminated and deallocated
(see section 3.3).

3.3 Process operation

A process operates in a cycle consisting of the following steps:

1. the process is awakened by one of the awaited events

2. the process responds to the event, i.e., executes a fragment of its code method

3. the process puts itself to sleep

Before a process puts itself to sleep, it usually issues at least one wait request—to
specify the event(s) that will wake it up in the future. A process may also issue a persistent
wait request (see section 3.3.2), to be restarted cyclically by the subsequent occurrences of
the same event. A process that goes to sleep without specifying a single waking condition
is terminated. There is no sense to keep such a process around, as it will never run again.
The effect is exactly the same as if the process performed delete on its object handle as
its last statement (section 3.2).

To put itself to sleep, a process (its code method) can execute the following statement:

sleep
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or simply return from the code method.

The following operation handles wait requests:

wait ai event state priority

Only the first two arguments are mandatory. The first of them identifies the agent (the
so-called activity interpreter (AI for short) responsible for triggering the waking event;
the second argument specifies the actual event.

Activity interpreters are discussed in section 4. We saw one of them, the timer, in the
example in section 3.2. In that case, the event was the delay in milliseconds after which
the timer was expected to go off.

Argument state is optional and defaults to an empty string. It specifies the state to
be assumed when the awaited event wakes up the process. This state will be returned in
the process attribute State which can be examined by the code method.

Example

The Alarm process from the example in section 3.2 has only one state. It is natural
to organize the code method of a multiple-state process into a switch statement. Suppose
that the first puts statement in Alarm should be executed after the delay, not immediately
after the process is created. The new code method can be written as follows:

process Alarm {

useown State

switch $State {

Start {

global Timer

useown Delay

wait $Timer $Delay WakeUp

}

WakeUp {

puts stdout "Alarm awakened"

wait $Timer $Delay WakeUp

}

}

}

If a process issues more than one wait request before going to sleep, the multiple wait
requests are interpreted as an alternative of waking conditions. It means that when
the process becomes suspended, it will be waiting for a collection of event types, possibly
coming from different AI s, and the occurrence of the earliest of those events will reactivate
the process. When a process is restarted, its collection of wait requests is cleared, which
means that in each operation cycle these events must be specified from scratch.
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3.3.1 Event priority

It is possible that two or more events from the pool of events awaited by a process occur
at the same time. This is not at all unlikely, because some events may be pending at the
moment when the wait requests for them are issued. In such a case, the event for which
the wait request was issued first will be the one presented to the process. This simple
rules also explains how multiple processes are scheduled. When two or more processes are
awakened by events occurring at the same time, the order in which they are restarted is
determined by the order of the wait requests for those events.

This is what happens if the processes do not use the fourth argument of wait to
specify the priority of the wait request. The argument can only take two values, 0 and
1, alternatively low and high, representing the low and high priority, respectively. The
default value, assumed when the argument is absent, is 0.

If two events awaited with different priorities occur at the same time, the one with
the high priority will be presented first. This rule applies to multiple events awaited by a
single process, as well as to events awaited by multiple processes, which occur at the same
time. If two or more high priority events occur simultaneously, they are processed in the
order of the corresponding wait requests.

When a process is awakened, its standard attribute Priority tells the priority with
which the process was restarted. The attribute can only take values 0 (low priority) and 1
(high priority). Another standard attribute, Message may contain an optional “message”
passed to the process by the AI responsible for delivering the waking event. The contents
of Message are AI -specific; if not used, Message contains an empty string.

Immediately when a process is created, a waking event for the process is generated
and scheduled to occur immediately. This event will wake up the process for the first time
with State equal to Start. Standard scheduling rules apply to the first waking event; by
default, the priority of this event is low. To make it high, the last argument of create
should be 1 (or high). This is the optional argument of the extra constructor for the
process type, which was added by the process operation (section 3.2).

3.3.2 Persistent wait requests

Wait requests issued with wait (section 3.3) are “volatile”: they are forgotten whenever
the process is awakened. Sometimes we would like a wait request to remain active for a
time significantly longer than a single invocation of the process’s code method, perhaps
for the entire lifetime of the process. Rather than repeat the request each time the process
is awakened, we can resort to the following operation:

monitor ai event state priority

The arguments have exactly the same meaning as for wait (section 3.3). The only
difference between wait and monitor is that a request issued with the latter command is
persistent, i.e., it remains active until it is explicitly canceled with
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cancel ai event

The operation undoes the effect of the last monitor command with the specified
AI /event combination.

Example

Let us redo once again the example from section 3.2. This time, we will do it right,
i.e., in the most natural and efficient way. The basic type of our process is declared
exactly as before, but its code method is now rewritten as follows:

process Alarm {

useown State

switch $State {

Start {

global Timer

useown Delay

monitor $Timer $Delay WakeUp

}

WakeUp {

puts stdout "Alarm awakened"

}

}

}

This solution is similar to the version from section 3.3. The wait operation from the first
state has been replaced by monitor. This makes the second wait statement (in state
WakeUp) unnecessary.

3.3.3 Unconditional state transition

State-less processes, e.g., like the one introduced in the example in section 3.2, are rather
uncommon. Typically, a process has several states and then its code method is organized
into a switch statement (e.g., see section 3.3.2). The process transits among its multiple
states by awaiting and receiving events.

Sometimes it is desirable to make a direct state transition, i.e., to perform a goto from
one state to another. This can be accomplished with the following operation:

proceed state

The mandatory argument identifies the new state. The effect is as if the process code
method was called again (from the previous level, not recursively) with the State attribute
containing the specified value. In fact, rescheduling is possible during this transition,
which is performed as a response to a hypothetical event awaited with high priority. It is
semantically equivalent to the following sequence:
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wait $Timer 0 state high

sleep

although a bit more efficient.

Example

By inserting proceed WakeUp after the monitor statement in the code method of Alarm
in section 3.3.2, we can force the process to behave as its very first version in section 3.2.
The process will execute the puts statement immediately after creation, and then every
$Delay milliseconds afterwards.

4 Activity interpreters

Activity interpreters are the objects responsible for triggering waking events for processes.
One of them is the timer (see the example in section 3.2) accessible via the global variable
Timer. This AI occurs in a single instance and its primary purpose is to implement alarm
clocks. Every process is also an AI ; it can generate events perceptible by other processes
at state transitions and at the moment of its termination. The remaining types of AI are
mailboxes (used for process communication) and interfaces (which interface the program
with peripheral devices or networking ports).

4.1 The timer AI

Although formally the timer AI occurs in a single instance (globally visible via the variable
Timer), it can be viewed as an unlimited collection of individual alarm clocks available to
processes. The most typical application of the timer AI is to put a process to sleep for a
prescribed amount of time. The format of a wait request for this occasion is

wait $Timer delay state priority

where delay must be an unsigned integer number specifying the amount of delay in mil-
liseconds. The awaited event will be triggered the prescribed number of milliseconds after
the current time, assuming that the process will not be awakened by an earlier event.

It is possible to issue a persistent delay request to the timer using monitor instead
of wait (section 3.3.2). In such a case, whenever the process is put to sleep, an implicit
timer request will be issued to wake the process up after the specified delay. Note that
the process may be awakened by another event (i.e., one that occurs before the timer goes
off). Following the processing of that event, when the process puts itself to sleep again,
the alarm clock will be reset for the original number of milliseconds.

Another possible timer event is one that occurs at the specified time of day. In this
case, the delay argument of wait must be a string representing a time of day in one
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of the formats accepted by the standard Tcl function clock scan. This format of the
delay argument can also be used with monitor, but then, once the event is triggered, it
is automatically cancelled (section 3.3.2), as there is no point in keeping it around any
more.

Example

Consider the following process:

class Ticker { u h } {

useown Until HowOften

set Until $u

set HowOften $h

}

process Ticker {

global Timer

useown State HowOften Until

switch $State {

Start {

monitor $Timer $HowOften Tick

wait $Timer $Until Done

}

Tick {

puts stdout "Tick"

wait $Timer $Until Done

}

Done {

puts stdout "No more ticks"

delete $This

}

}

}

which writes “ticks” to the standard output every specified interval (HowOften) until the
the time reaches (or exceeds) the specified limit (Until). At state Done the process ter-
minates itself (section 3.2). Note that replacing delete with cancel $Timer $HowOften

would have the same result. As we said in section 3.3, a process that goes to sleep (returns
from its code method) without specifying a single waking condition that may resurrect it
in the future is terminated and ceases to exist.

The process cane be simplified a bit by replacing the wait request in state Start with

monitor $Timer $Until Done
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and removing the wait request in state Tick.
This is a sample way to create our process:

global Quarter

create Ticker "22:30:00" $Quarter

The global constant Quarter specifies the number of milliseconds in 15 minutes; thus,
the process will “tick” every quarter until 10:30 p.m. Other convenient constants of the
same kind are: Second, Minute, FiveMinutes, TenMinutes, and Hour.

Note: timer events never set the Message string (section 3.3.1). There is no message that
comes with a timer event, other than the event itself.

4.2 The process AI

Every process is also an activity interpreter, which means that its handle can appear as
the first argument of wait or monitor. The event description in this case is a string
representing the process’s state identifier. String “Death” is reserved for a special (and
non-existent) state corresponding to process termination.

The semantics of a state wait request issued to another process is to ask for an event
to be triggered when that process gets into the specified state. The event will be triggered
after the process has completed its processing of that state.

Example

The most useful application of state waiting is to spawn a process and wait for its termi-
nation. For example, with the following statement:

wait [create Ticker "Monday" $Hour] Death TickerDone

we can create a Ticker process presented in section 4.1 and wait for its termination. When
Ticker terminates, we will transit to state TickerDone (assuming we do not wait for other
events that may interrupt our waiting).

Both operations wait and monitor can be used to issue state wait requests. Of course,
the Death event for a given process can only occur once.

Note: process events never set the Message string (section 3.3.1). There is no message
that comes with a process event, other than the event itself.

4.3 The mailbox AI

Mailboxes are containers for arbitrary strings, which we will call “items.” It is possible
to deposit an item into a mailbox, extract an item from a (nonempty) mailbox, or wait
until a mailbox gets into some specific state. Items in a mailbox are stored in the order
in which they have been deposited. It isn’t absolutely necessary to extract them in this
order, although in many cases this is the natural thing to do.
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4.3.1 Declaring and creating mailboxes

A mailbox is an object of a class type qualified as a mailbox type. To qualify a type as
mailbox, we use the following simple operation:

mailbox typename

where typename stands for an already defined (and unqualified) class type. The operation
adds one extra constructor to the list of constructors already associated with the quali-
fied type. This new constructor takes one optional argument that specifies the mailbox
capacity. The default capacity of a mailbox is 0 (which is not necessarily useless).

Example

Below we have the simplest possible (yet quite sensible) mailbox type declaration.

class MyMailboxType

mailbox MyMailboxType

To create an instance of our mailbox, we can do this:

set mbx1 [create MyMailboxType 256]

This mailbox is capable of storing up to 256 items.

The capacity of a mailbox tells the maximum number of items that the mailbox can
accommodate. An attempt to store a new item in a full mailbox will fail. A capacity-0
mailbox is always full and it cannot accommodate even a single item. However, it may
still make sense to try to store an item in it, because this operation may trigger events on
the mailbox (and wake up some processes).

If the mailbox type defines a method called output, it will be called whenever an item
is deposited in the mailbox, with the item passed as the only argument. The item is
passed “by variable,” so that it can be modified by the method before being stored in the
mailbox.

The output method, if defined, is also called for an item that is not actually stored in
the mailbox because it happens to be full.

Similarly, whenever an item is removed from a mailbox for which a method called
input is defined, that method is called with the item passed (by variable) as the only
argument. Using the two methods, the mailbox class can define its private pre-processing
for deposited items and/or post-processing for extracted items. It is legitimate to define
only one method (and, of course, not to define any of them).

At first sight, the names input and output may be confusing because output gets
called when we in fact “input” something to the mailbox and vice versa. We should look
at it as if the mailbox were an i/o device: when we “write” something to it, we call the
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output method, and the other way around. This way of interpreting mailbox operations
is also consistent with interfaces (section 4.4), which can be viewed as special-purpose
mailboxes.

A mailbox can be destroyed and deallocated by delete—as any regular object.

4.3.2 Operations on mailboxes

The following function adds an item to a mailbox:

deposit mailbox item

wheremailbox is a mailbox handle and item is the new item to be deposited in the mailbox.
The function returns 1 or 0, depending on whether the new item was added to the mailbox
or not (because the mailbox was completely filled). Note that for a capacity-0 mailbox,
deposit always returns 0.

Adding an item to a mailbox (also trying to add an item to a capacity-0 mailbox) may
trigger an event awaited by a process (section 4.3.3).

If the mailbox type defines a method called output, that method is called with the
deposited item passed as the argument (by variable), before the item is actually deposited
in the mailbox. It is also called if the item is not deposited because the mailbox happens
to be full.

Extracting items from mailboxes is accomplished with the following function:

extract mailbox where pattern

The last argument is optional and defaults to an empty string.
The function attempts to extract an item from the mailbox pointed to by mailbox and

store the item in the variable represented by where. If pattern is empty (or not specified),
the first item is extracted from the mailbox. Otherwise, pattern is interpreted as a regular
expression and the first item matching the expression is extracted.

If the function succeeds, i.e., an item is removed from the mailbox, the item is stored
in where and the function returns 1. Otherwise, the function returns 0. If the mailbox
type defines a method called input, that method is called with the extracted item passed
as the argument (by variable), after the item is removed from the mailbox. The input

method may modify the item before it is returned by extract.

4.3.3 Mailbox events

A mailbox wait request may specify one of the following events:

Newitem

This event is triggered when an item is deposited into the mailbox. Note that
it can be triggered on a capacity-0 mailbox.
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Nonempty

This event is triggered when the mailbox is or becomes nonempty. It cannot
be triggered on a capacity-0 mailbox.

Receive

The event is triggered when the mailbox is or becomes nonempty. The first item
is automatically extracted from the mailbox; it will be returned in Message

when the process is awakened.

Delete

The event is triggered when an item is removed (extracted) from the mailbox.

An integer number
This event (the so-called count event) is triggered when the number of items
in the mailbox becomes (or is) exactly equal to the specified number.

Anything else
Any other string appearing as the event identifier (except “Attention” (sec-
tion 4.5) is interpreted as a regular expression. This event (the so-called pattern
event) is triggered if the mailbox contains an item matching the expression.

Most mailbox events return via the Message attribute of the restarted process (sec-
tion 3.3.2) the item that has triggered the event. In some cases, this notion is obvious.
For example, those events that can only be triggered when some specific item is involved
(i.e., Newitem, Receive, Delete) return that particular item. Note that Newitem and
Delete cannot occur at the moment when the wait request is being issued: they are only
triggered when some operation is performed on the mailbox (a new item is being added
or an existing item is being removed). The remaining events can occur immediately, if
the mailbox contents already fulfill some criteria, or they can be triggered later, when the
mailbox gets into the required state. Thus, for example, event Nonempty occurs immedi-
ately if the mailbox happens to be nonempty when the wait request is issued, or may be
triggered later by a deposit operation (section 4.3.2) performed on the mailbox. In both
cases, Message returns the first item from the mailbox. Note that the item is not removed
when the event is presented.

The first item is also returned by a count event, assuming that the count is not zero.
Otherwise, Message contains an empty string. A pattern event returns the first item
matching the specified regular expression.

The purpose of Receive is to implement a safe item acquisition in a situation when
multiple processes await items on the same mailbox. Note that the Nonempty status of a
mailbox does not guarantee that a subsequent extract operation will succeed, if there are
multiple processes awaiting the Nonempty event and extracting elements from the mailbox.
Regardless of the priority of the wait request for Receive, the event is always triggered
with the high priority.
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Example

Mailboxes are natural tools for inter-process communication and synchronization. For
illustration, let us use a mailbox to implement a counting semaphore. The idea is to have
a critical section with the property that no more than K processes can be within it at the
same time. We can program our mailbox in the following way:

class CSem

mailbox CSem

...

set Sem [create CSem $K]

A process willing to use the semaphore may define the following states whose purpose
should be obvious:

global $Sem

...

Enter {

if [deposit $Sem ""] { proceed Entered }

wait $sem Delete Enter

}

...

Entered { ... }

...

Exit {

extract $sem junk

}

4.4 The interface AI

An interface has some properties of a mailbox. The primary difference is that an interface
can be filled and/or emptied by an external agent, i.e., a peripheral device or a networking
port. Interfaces provide a SICLE program with a reactive interface to the outside world.

4.4.1 Declaring and creating interfaces

An interface can be any class object qualified as an interface, which is accomplished with
the following operation:

interface typename

The operation adds one extra constructor to the list of constructors already associated
with the qualified type. This constructor takes three arguments. The create operation
for an interface object looks as follows:
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create arg1 ... argn how device bufsize

where arg1 ... argn are the arguments required by the constructors of the base type (in
most cases that type has no constructors), and the last three arguments are the specific
arguments of the interface constructor. In fact, only the first of them (how) is required.
The remaining two default to an empty string (device) and to 256 (bufsize).

Argument how is a string describing the way in which the interface is to be bound to
an external agent. This string may be combined from the following keywords, which may
occur in any order and be separated by anything that cannot be confused with one of the
legitimate keywords:

internet

This keyword means that the interface represents a TCP/IP socket. If it is not
present, the interface represents a peripheral device.

server

This keyword is only meaningful in connection with internet. It declares the
socket as a server-end socket, i.e., one on which we want to listen for incoming
connections. Otherwise, the socket is a client socket.

wait

If used in connection with server, it means that we want to wait until there is
at least one incoming connection request on the server socket. The constructor
will not return before then. Otherwise, when used for a non-server (client)
socket, it selects asynchronous (fast-return) connection, which is without per-
ceptible semantical consequences. The keyword is irrelevant if used without
internet.

single

This keyword is only meaningful in connection with server and wait. It means
that we want to receive a single incoming connection on the server socket. In
other words, we are not really a server and we want to engage in a session
with a single party, but the other party will initiate the connection. When
the constructor returns, the interface will represent our end of the peer-to-peer
connection. Otherwise, i.e., when single is absent, the interface represents a
“master” socket used for receiving connection requests.

read

This keyword is only meaningful for a device interface. It indicates that the
device will be used for reading.

write

This keyword is only meaningful for a device interface. It indicates that the
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device will be used for writing. Note that its is possible to use the same device
for both reading and writing, and it is required to use it in at least one of the
two i/o modes.

The meaning of device depends on the interface type determined by how. For a server
socket, device is the TCP/IP port number on which the socket listens for incoming con-
nections. For a client socket, device should have the following format:

hostname:port

e.g., sheerness.cs.ualberta.ca:4987. For a device interface, device should be the name
of the device to be opened, as required by the open operation of Tcl. Optionally, this name
can be followed by a colon, followed in turn by the serial parameters (if the device happens
to be a serial device). The format of these parameters is that required by the -mode option
of the fconfigure operation of Tcl.

The last argument specifies the buffer size, i.e., the maximum length of a sequence of
bytes that can be acquired from the interface at a time. It should be at least as large
as the maximum length of an item extracted from the interface with a single extract

operation (section 4.4.2). Note that storing items in the interface (i.e., sending them to
the external agent) is not subjected to this limitation.

Examples

Below we list a few sample create operations for various interfaces. In all cases, we
assume that the constructors of the base type need no arguments. In the vast majority of
situations, the base type of an interface is in fact trivial.

set sok [create Int internet legal.cs.ualberta.ca:3345]

The interface represents a client socket connected to port 3345 on legal.cs.ualberta.ca.
Note that there must be a listener on that port at the moment when the operation is issued,
as otherwise it will fail. The input buffer size for the interface is 256 bytes (the default).

set cli [create Int internet+server 6677]

This interface represents a server socket listening on port 6677. The input buffer size is
irrelevant in this case because the sole purpose of this interface is to trigger events caused
by incoming connection requests.

set peer [create MyInt internet+server+wait+single 6677 1024]

Here we have a peer interface disguised as a server interface. The operation will open a
server socket on port 6677 and wait for the first incoming connection. Then, the server
socket will be closed and the interface will be used to represent our end of the peer-to-peer
socket. The input buffer size is 1024 bytes.
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set d [create MyInt read /dev/ttyS0 1]

This is a device interface to be used for reading from /dev/ttyS0. Apparently, we want
to read one character at a time because the input buffer length is 1.

set d [create MyInt read+write /dev/ttyS1:4800,n,8,1 64]

Another device interface. This time we specify the serial parameters: 4800bps, no parity,
8 bits, one stop bit. The buffer size is 64 bytes, the device will be used for both reading
and writing.

Note that it is legal to create drastically different interface objects from the same, usually
trivial, interface type. One possible situation when the interface type may not be trivial
is when it defines methods input and/or output (section 4.4.2) for automatic prepro-
cessing of data before it is presented to the program or expedited to the external agent.
Sophisticated implementations of those methods may use attributes of the interface’s base
type.

4.4.2 Input and output operations

Operations on interfaces, at least the most typical ones, are almost the same as operations
on mailboxes. In particular, it is possible to “deposit an item” into an interface with the
following operation:

deposit interface item

where interface is an interface handle and item is a string. With the above operation, the
deposited string is simply written to the external agent associated with the interface, i.e.,
TCP/IP port or device.

If the interface type defines a method called output, this method is called with the
deposited string passed as the argument, before it is actually written to the port or device.
As the string is passed by variable, it can be modified by the output method.

Note that deposit never blocks. Internal buffering is used to store the written data
before it can be physically accepted by the port or device.

The operation is illegal on an interface that has been associated with a server socket
or on a device interface not declared as “writable” (section 4.4.1).

The operation returns 0 if it has succeeded (this may be a bit confusing in confrontation
with the mailbox variant—section 4.3.2), and 1 if it has failed. The only reason for
interface’s deposit to fail is to hit an i/o error. This will happen, e.g., if the interface has
been shutdown (section 4.4.3).

The following operation can be used to extract (read) a piece of string from an interface:

extract interface where pattern
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where interface is an interface handle, where is a variable to store the result, and pattern
is an optional selector of the extracted string.

The operation is illegal on an interface that has been associated with a server socket
or on a device interface not declared as “readable” (section 4.4.1).

The operation never blocks waiting for data to arrive from the port or device. The
input buffer of the interface is filled asynchronously, up to the declared limit (section 4.4.1)
as soon as new data becomes available. If extract fails to extract the string from the
current contents of the buffer, it returns 0 and where is not set. Otherwise, extract
returns 1 and where is set to the extracted string.

If pattern is an empty string (or is not specified at all), the entire contents of the
interface’s buffer are extracted and the buffer is emptied. If the buffer is empty, the
operation fails and returns 0.

If pattern is an integer number, it specifies the number of bytes to be extracted from
the buffer. If the buffer contains that many bytes, its initial portion of the specified length
is removed and stored in where, and extract returns 1. Otherwise, i.e., if the buffer is
shorter than the specified number, it is left intact and extract returns 0.

If pattern is neither empty nor it looks like an integer number, it is treated as a regular
expression to be matched against the contents of the buffer. If there is no match, the
operation fails and returns 0. Otherwise, the first matching portion of the buffer is stored
in where. The entire initial fragment of the buffer (starting from the first byte) up to the
last byte of the first match is removed from the buffer. Note that if the matching string
does not fall on the beginning of the buffer, the initial (umatched) portion is discarded
and ignored.

If the interface type defines a method called input, the method is used to preprocess
the data acquired from the external agent associated with the interface, before those
data are stored in the interface’s buffer (section 4.3.1). Every chunk of data acquired
asynchronously from the port or device is passed through the input method before being
stored in the buffer. It can be preprocessed in an arbitrary way, in particular it can grow
or shrink. If it grows, then the limit on the number of bytes that can be stored in the
buffer at a time (section 4.4.1) may be exceeded, because whatever is returned by input

is appended at the end of the buffer regardless of its length.

Note that the value of pattern is interpreted in the context of the preprocessed data
rather than the original data arriving from the interface’s external agent.

Example

Below we list the input method defined for an interface representing the serial controller
for X10 modules.

method X10Monitor input { b } {

upvar $b buf

binary scan $buf H[expr 2 * [string length $buf]] buf
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}

As we can easily see, the method converts binary strings arriving from the controller to
their hexadecimal character representations. Every arriving message is expanded by the
factor of two.

It isn’t difficult to guess that this interface also declares an output method that works
in the opposite direction. As a matter of fact, it is a bit more complicated because it also
calculates a checksum required by the controller:

method X10Monitor output { buf } {

upvar $buf b

useown CheckSum

set CheckSum 0

set N [string length $b]

for { set i 0 } { $i < $N } { incr i 2 } {

incr CheckSum 0x[string range $b $i [expr $i + 1]]

}

set CheckSum [expr $CheckSum & 0xff]

set b [binary format H[string length $b] $b]

}

4.4.3 Special operations

An interface can be destroyed by executing delete on the handle. This operation not only
deallocates the interface object, but it also closes the socket or device associated with the
interface. It is possible to close the interface’s agent without destroying the interface with
the following operation:

shutdown interface

where interface is the interface handle. After this operation, the interface becomes unus-
able and it should be destroyed. One reason why sometimes it may make sense to separate
the two operations, i.e., closing and destroying, is to make sure that multiple processes
perceiving the status of the same interface do not attempt to reference an invalid handle.

The following function:

closed interface

returns 1 if the interface’s agent has been closed, and 0 otherwise.

Note that an interface’s port or device becomes closed not only if we perform shutdown

on it, but also in consequence of hitting the end of file (e.g., on a socket that has been
closed by the peer) or an i/o error. Therefore, by checking the interface status, e.g., before
attempting an i/o operation, we make sure that we are not beating a dead horse. Although
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deposit on a shut down interface will indicate a failure (section 4.4.2), extract will only
tell us that it has failed to extract the string.

The usual i/o operations are not applicable to server interfaces, although those in-
terfaces can be destroyed, shut down, or checked for being closed. The sole purpose of
a server interface is to signal incoming connections. With the following operation, it is
possible to receive a new connection from a server interface:

client interface ctype bufsize

If there is no pending connection on the server interface pointed to by the first argu-
ment, the operation returns an empty string. Otherwise, it creates a new interface of class
type ctype and returns its handle. The last (optional) argument (which defaults to 256)
gives the buffer size for the new interface. The implicit how parameter of the new inter-
face (section 4.4.1) is of course internet+client. It represents our end of a peer-to-peer
socket.

4.4.4 Interface events

The non-blocking i/o provided by interfaces needs a collection of events to indicate when
it becomes possible. All those events are listed below.

Newitem

This event occurs when at least one new byte appears in the interface’s input
buffer and is available for extraction. Newitem never occurs immediately, e.g.,
if the buffer is nonempty when the wait request is issued. The buffer contents
must change for the event to occur.

Receive

This event occurs when the input buffer is or becomes nonempty. The entire
buffer contents are returned in Message when the event is presented to the
waiting process, and the buffer is cleared. Receive is very similar to its mailbox
counterpart (section 4.3.3).

Close

This event occurs when the interface is closed and the buffer is empty. It will
occur immediately, i.e., at the moment when the wait request is issued, if these
conditions are met.

Client

This event occurs on a server interface when there is a pending connection
request. A process receiving this event may execute client (section 4.4.3) to
accept this connection.
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An integer number
This event (the so-called count event) occurs when the length of the string in
the input buffer is (or becomes) greater than or equal to the specified number.
Note the difference with respect to the mailbox count event (which only occurs
on the exact count). In particular, count 1 for an interface means “nonempty,”
which is the reason why there is no Nonempty event for interfaces.

Anything else
Any other string appearing as the event identifier (except “Attention” (sec-
tion 4.5) is interpreted as a regular expression. This event (the so-called pattern
event) is triggered if the contents of the input buffer match the expression.

The contents of Message (section 3.3.2) when a process is restarted by an interface
event depend on the event. For Newitem and a count event, Message returns an integer
number indicating the number of bytes in the buffer. For Receive, Message returns the
entire contents of the buffer (at the moment when the event was triggered). For a regular
expression, Message returns the portion of the buffer that has been matched. For Close,
Message returns an empty string.

When an interface is closed and there is a process waiting for Newitem on the interface,
the process is restarted with Message returning the number of bytes currently in the buffer.
The Receive event is also triggered in such circumstances, with Message containing an
empty string. Thus, a process awaiting Receive must be prepared to receive nothing,
which normally indicates the end-of-file condition on the device or socket, but may also
signal an error. The actual Close event is only triggered if the input buffer happens to
be empty. For as long as the buffer contains some bytes, those bytes can be extracted
from the interface in the standard way, even though the interface’s agent has been closed
and will send no more data. A regular expression event (but no count event) on a closed
interface is also triggered (but only if the buffer is empty) with Message containing an
empty string.

Example

Assume that we would like to implement an “addition” server that will receive integer
numbers from clients and calculate their sums. A client may submit a list of integer num-
bers separated with blanks, with a period at the end of the list. The server will compute
the sum of all those numbers and return it to the client, closing the interface after that
operation.

We start from the process responsible for accepting connections. This is how it may
look:

class MPort

interface MPort
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class AServer { port } {

useown Port

set Port [create MPort internet+server $port]

}

process AServer {

useown Port

set nc [client $Port MPort]

if { $nc != "" } { create Adder $nc }

wait $Port Client

}

The above sequence illustrates the standard way of receiving connections on a server
interface. The AServer process creates a server interface (of type MPort) representing
a master socket listening on the specified port. The process’s code method attempts to
acquire a connection by executing client (section 4.4.3). If the operation succeeds, nc
points to a new interface (its type is also MPort) which represents our end of the client’s
socket. Then AServer creates a new process of type Adder passing it the new interface.
That process will be responsible for handling the new request.

Before putting itself to sleep (i.e., returning from the code method), the process issues
a wait request to the server interface—to be awakened when there is a new connection
request. Note that if there already is a pending connection request, the event will be
triggered immediately and the code method of AServer will be re-executed.

Below we list our implementation of Adder.

class Adder { cl } {

useown Client Sum

set Client $cl

set Sum 0

}

process Adder {

useown Client Sum

if [extract $Client num {^[1-9][0-9]*[ .]+}] {

regexp {([0-9]*)(.*)} $num ign num sep

incr Sum $num

if { [string first "." $sep] >= 0 } {

deposit $Client ${Sum}\n

delete $Client

sleep

}

}

if [closed $Client] {

delete $Client

} else {
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wait $Client {[1-9].*[ .]}

}

}

Also this time we can get away with a single-state code method. Upon creation, the
process initializes the sum and then attempts to extract a number from the interface’s
input buffer. To be complete, this number must terminate with a space or period (in fact,
we admit multiple spaces/periods at the end of a number). The Sum is incremented by
the new number and if the delimiter contains a period (indicating the end of sequence),
the Sum is sent to the client and the interface is closed. The process terminates because it
goes to sleep without specifying a single wait request. The newline character at the end
of output makes it look better, e.g., when our simple server is tested using telnet.

If the extraction fails, or if more numbers are expected, the process issues a wait request
to the interface to be awakened as soon as a new number appears in the input buffer. Note
that before issuing the wait request the process checks if the interface is not closed. This
would indicate an abnormal condition (i.e., misbehaving or dead client) and the process
would just destroy the interface and terminate itself without completing its service.

To turn the above code into a complete program, we have to insert

package require sicled 1.0

sicle

in front of it, and

create AServer 5055

kernel

at the end. Of course, 5055 is just a sample port number, which can be replaced with
another legitimate (and unused) port. It is easy to test the server via telnet by connecting
to port 5055.

4.5 The attention event

One event is common for all activity interpreters and is triggered on all of them in the
same way. This event is Attention and it occurs when somebody executes

attention ai message

on the AI. The first argument is an AI handle and the second is the optional string to
be returned in Message (section 3.3.2) when the event is presented to a process. The role
of Attention is to indicate special (programmable) conditions that may occur on activity
interpreters, which are not covered by the standard semantics of the AI s.
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5 Sensors

SICLE offers a simple collection of tools for defining logical sensors and actuators, inter-
facing them to physical sensors and actuators, and writing programs operating on them.
Among those tools is a built-in server process that allows remote clients to connect to a
SICLE program and perform sensor operations. Using the server, it is also possible to
upload so-called actions into SICLE programs. Actions can be viewed as dynamically
loaded processes identifiable from the outside and triggered by some conditions.

The sensor tools offered by SICLE are intentionally extensible. Their present collec-
tion includes X10 modules (accessed via the CM11A serial controller), SDS sensors and
actuators (accessed via an SDS interface daemon provided as a separate program), and
simulated sensors and actuators.

To make the sensor tools available to SICLE processes, the sicle operation (sec-
tion 3.1) must be called with a parameter including the string sensors as its part. This
will force the program to read the so-called sensor map (the contents of a special file) and
launch the sensors server process listening for client connections on a dedicated port.

5.1 Sensor map

The default name of the sensor map file is smap.txt. The file is sought in the directory
in which the SICLE program was called, if the argument of sicle (section 3.1) contains
the string sensors, i.e., the sensor component of SICLE is enabled. This default name
can be changed with the -s call parameter of the SICLE program, e.g.,

mypgm -s mysensormap.map

or

tclsh mypgm -s mysensormap.map

Call arguments of a SICLE program are discussed in section 6.1.

A sensor map consists of textual entries describing the mapping of logical sensors used
by the program. Typically, each entry occupies one line.

Example

Below we list the contents of a sample sensor map file for a program driving three X10
modules.

Tag: TV Class: X10 Value: U Params: A1,nodim,/dev/ttyS3:4800,n,8,1

Tag: Lamp1 Class: X10 Value: U Params: A2,dim,/dev/ttyS3:4800,n,8,1

Tag: Lamp2 Class: X10 Value: U Params: A3,dim,/dev/ttyS3:4800,n,8,1
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A complete entry for one sensor/actuator consists of four fields named Tag, Class, Value,
and Params. These fields must occur in the listed order and they must be preceded by the
headers (i.e., their names terminated by colons).

The Tag field specifies the symbolic name via which the sensor will be visible to the
program. This can be any string that does not include blanks, tabs, or newlines. Needless
to say that sensor names should be unique within a program (map file).

The Class field identifies the sensor type. The following types are legal in the present
version of SICLE: X10 (an X10 module), S (a simulated sensor/actuator), and SDS (an
SDS sensor/actuator).

The Value field tells whether and how the sensor/actuator values are to be mapped,
i.e., transformed into other values. The whole purpose of the sensor map file is to make
all sensors (possibly with diverse, vendor-specific characteristics) appear in a uniform way
to the SICLE program. This may involve remapping the values assumed by the physical
sensors/actuators, so that their logical values (used by the program) look uniform.

The letter U occupying the Value field in the above example means that the sensor’s
values are not remapped. In fact, any string that does not contain “=” has the same
meaning. A remapping is only effected if the Value field has the following format:

l1=r1,l2=r2,...

where each l i identifies a logical value (as perceived by the program) and each r i identifies
an actual (real) value (as perceived by the sensor/actuator). If l i is symbolic (i.e., it doesn’t
look like a nonnegative integer number), it defines a single discrete mapping of a symbolic
value (used by the program) into a numerical (or possibly symbolic) value understood
by the sensor. If both l i and r i are numeric, there must be exactly one other pair l i, r i
with this property. The two pairs specify a linear mapping between logical and physical
numeric values, carried on according to the following formulas:

R = (l i-L)*(r j-r i)/(l j-l i) + r j
L = (r i-R)*(l j-l i)/(r j-r i) + l j

where L is the logical value and R is the “real” value.

The Params field is specific to the sensor type and is intended to give the physical
coordinates of the sensor within its domain. For an S-type (simulated) sensor, which has
no physical counterpart, the Params field is ignored (although it must be specified).

For an X10 module (visible via the X11A serial controller), the Params field specifies
all the parameters needed to locate and address the module within the home network. The
field consists of the following subfields separated by commas (in the order of occurrence):

1. The X10 address of the module. This address consists of a letter A-P identifying the
“house” and a number 1-16 identifying the unit (module) within the house.

2. dim or nodim, depending on whether the module can be dimmed or not.



5.2 Working with sensors 39

3. The serial device representing the X11A controller driving the module. This field is
in the format accepted by the interface constructor (section 4.4.1). In particular, it
may include the specification of the serial parameters for the device (for X11A, they
should be “4800,n,8,1”).

For an SDS sensor/actuator, the Params field consists of the following six fields sepa-
rated by commas (in the order of occurrence):

1. the name of the host on which the SDS daemon is running

2. the TCP/IP port on which the daemon is listening

3. S or A, depending on whether the unit is a sensor or an actuator

4. the SDS board number

5. the SDS network number

6. the SDS unit number within the network

The last three fields can be viewed as the physical coordinates (SDS network address) of
the sensor/actuator.

Example

Below we list the contents of a simple map file describing one SDS sensor and one ac-
tuator.

Tag: Switch

Class: SDS

Value: ON=1,OFF=0

Params: sheerness.cs.ualberta.ca,2286,A,0,1,2

Tag: Bulb

Class: SDS

Value: ON=0,OFF=1

Params: sheerness.cs.ualberta.ca,2286,S,0,1,1

Note the mapping of the binary values taken by the two units into symbolic names.

5.2 Working with sensors

From now on, by “sensor” we will mean “sensor or actuator.” If we need to distinguish
between the two, we will say it explicitly.

Sensors are represented by SICLE objects. Each sensor class (simulated, X10, SDS)
has its own sensor type (SSensor, X10Sensor, and SDSSensor, respectively). There is
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no need to know these types—all sensor operations can be carried out in a standard way
independent of the sensor class. For the record, SSensor and X10Sensor are implemented
as mailboxes (section 4.3) while SDSSensor is an interface type (section 4.4).

5.2.1 Identifying sensors

A sensor can be referenced by its object handle or by its symbolic name assigned in the
sensor map file. The following function returns a sensor object handle, given the sensor’s
symbolic name:

sensor name

When called for the first time with a given (legitimate) sensor name, the operation
creates the sensor object (based on the description in the sensor map file) and returns
its handle. With subsequent calls, sensor just returns the handle of the existing named
sensor.

The following argument-less function:

sensors

returns the list of all sensor names known to the program (based on the sensor map file).

5.2.2 Operations on sensors

The primary attribute of a sensor is its value, which may be a number or an arbitrary
string, possibly mapped from a physical value (section 5.1). This value is available directly
as attribute Value, e.g., given a sensor handle, the following operation:

getattr handle Value

will return the sensor’s value.

Although for the presently implemented sensor types the above method of reading the
sensor’s value is going to work, it is recommended not to use the Value attribute directly.
Certainly, it is not recommended to set Value using setattr (section 2.5.3). Instead,
the following two methods (section 2.5.1) of the sensor types should be used for these
purposes:

getValue

setValue newvalue

Note that usually, when the value of a sensor (or actuator) is set, some specific action
must be carried out, e.g., the new value must be propagated to the physical counterpart
of the actuator, processes waiting for the new value of the sensor should be awakened, etc.
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By always using the above two methods to reference sensor values, we make sure that all
those operations are performed as needed.

Example

Consider the X10 sensors described by the sample map from section 5.1. The follow-
ing sequence of operations:

invoke [sensor TV] setValue on

invoke [sensor Lamp1] setValue off

invoke [sensor Lamp2] setValue 50

switches on the TV, turns off one lamp, and sets the other one at 50% of its maximum
brightness.

It is also possible to perform operations on sensors using their names rather than object
handles. The following function:

sense how value s1 ... sn

checks the values of a group of sensors identified by their names s1 ... sn. If how is any,
the function returns 1 if any of those sensors has the specified value. The only other
legitimate value of how is all. The function returns 1 if all the sensors have the specified
value.

Another operation that uses sensor names rather than handles is

setall value s1 ... sn

which sets all the listed sensors to the specified value.

Example

Consider the following command involving a collection of X10 modules:

if [sense any on Motion1 Motion2] {

setall on Alarm1 Alarm2 Alarm3

}

If any of the two modules (probably motion detectors) is on, the three alarm switches are
all set on.
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5.2.3 Sensor events

Sensors may be implemented internally as objects of different types, but all these types
are activity interpreters. In fact, there is only one event of interest for a sensor. This event
is Attention (section 4.5), which is triggered whenever the value of a sensor is changed.

Example

Below we list a simple process monitoring a set of motion detectors and switching on
and off the lights.

class MMonitor { slist alist } {

useown SList AList TenSeconds

global Second

set SList $slist

set AList $alist

set TenSeconds [expr $Second * 10]

}

The first constructor argument is a list if sensors to be monitored. If any of those sensors
goes off, we will switch on all the modules from the list represented by the second argument.
Then every 10 seconds we will switch those modules on and off until at least one of the
sensors remains on. These operations are accomplished by the following code method:

process MMonitor {

useown State SList AList TenSeconds

global Timer

state Start {

if [eval sense any on $SList] {

eval setall on $AList

wait $Timer $TenSeconds Quiet

} else {

foreach s $SList { wait $s Attention GoOff }

}

}

state Quiet {

eval setall off $AList

wait $Timer $TenSeconds Start

}

}

The use of eval is necessary because the sensor lists for sense and setallmust be explicit,
i.e., every sensor must be specified as a separate argument.
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Note that the Attention event on a sensor (or any other AI for that matter) is only
triggered at the moment when somebody executes attention on the AI (section 4.5). The
attention condition is not queued if nobody is waiting for the event when the operation is
executed. Consequently, to perceive a change of a sensor’s value, a process has to make
sure that the sensor is never left “unattended.”

Example

Consider the following process code method:

process SensorTrace {

useown State Sensor

switch $State {

Start {

wait $Sensor Attention NewValue

}

NewValue {

puts stdout "New value: [getValue $Sensor]"

proceed Start

}

}

}

which may seem to exemplify a natural way of tracing the value of a sensor. Note, however,
that some value change (attention) events may be lost because there are moments when
the sensor is not monitored for this event. These moments occur when the process transits
from state Start to NewValue (things can happen while that transitions is being scheduled)
and from NewValue back to Start (proceed is not a direct “goto”—section 3.3.3—but
involves scheduling). Note that the following version:

process SensorTrace {

useown State Sensor

switch $State {

Start {

monitor $Sensor Attention NewValue

}

NewValue {

puts stdout "New value: [getValue $Sensor]"

}

}

}

is much better. Technically the sensor’s value may still change while the process is being
awakened (after the event is triggered and before the process is scheduled to run in state
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NewValue). However, there is no universal remedy for this, because there is always a certain
time threshold such that a condition arising for less than that time is not perceptible. To
reduce the duration of this threshold in the above code, the monitor operation can be
issued at high priority (section 3.3.2).

The following single-state version of the process also does a good job:

process SensorTrace {

useown Sensor OldValue

set nv [getValue Sensor]

if { $nv != OldValue } {

puts stdout "New value: $nv"

set OldValue $nv

}

wait $Sensor Attention

}

To reduce the length of the sensitivity threshold in the above code, the wait operation
can be rewritten as

wait $Sensor Attention "" high

One important property of the last two versions of SensorTrace, in contrast to the
first version, is that the printed value of the sensor is always the actual current value.
Suppose that the sensor has two binary values, e.g., on and off, and consider the first
version of the process. Imagine that the sensor turns on, which event triggers a transition
from Start to NewValue, but during the transition from NewValue to Start, the sensor
turns off. This change will be completely lost and the last recorded value of the sensor
will be on. This cannot happen with the last two versions. Although some value changes
can be lost, the recorded value is actually the current value of the sensor.

5.2.4 Legitimate values of standard sensors and actuators

Sensor values can be mapped into arbitrary numbers and strings (section 5.1), but to do
this mapping we have to know something about the legitimate values assumed by the
physical sensors.

Simulated sensors are not interfaced to any physical objects: their values can only be
set and perceived by the program. Therefore, the value of a simulated sensor/actuator
can be an arbitrary string and it is never mapped.

For an SDS sensor/actuator, the situation is also quite simple. The unmapped value
of such a sensor/actuator is a signed integer number between -32768 and 32767, whose
interpretation is specific to the given sensor model.

For an X10 module, the situation is a bit more complicated, owing to the following
two facts:
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• Some X10 modules are binary (on/off) while some others are dimmable.

• It is not practically possible to keep track of the actual “value” of a dimmed module.

The physical interpretation of “setting the value of an X10 module” is that of “sending
a command to the module.” For example, one can dim or brighten a module by a given
number of units (and a dimmable module will respond to this command) but there is no
direct interpretation of the resultant value of the module actuator. The actual response
of various modules to such commands is somewhat uneven and random.

The home network of X10 modules is visible to SICLE via a controller (X11A) that
creates some perception of the status of the various modules. X10 sensors and actuators,
as perceived by a SICLE program, are implemented by examining and changing this
perception. There is no clear distinction between a sensor and an actuator: every X10
module has a potential to behave both ways. For example, a motion detector is technically
a sensor, i.e., its value is changed by some physical actions, but this value can also be set
by the program. This operation will actually set the value of the controller’s perception
of the motion detector (the motion detector itself has no means to be affected), but, for
all practical purposes, the net effect is the same as if the status of the motion detector has
actually changed.

For a binary X10 module (declared as non-dimmable in the sensor map file—
section 5.1), its perceived (unmapped) value is one of the strings on, off. These are
the values that will be returned by getValue (section 5.2.2) for such a module.

The value of a dimmable module (as returned by getValue) can be an integer number
between 0 and 100 (representing the percentage of brightness), or a string on/of indicating
that the module is completely on or off.

The argument of setValue may take one of the following forms:

on

The module is turned on. The value stored in the module is on.

off

The module is turned off. The value stored in the module is off.

possibly signed integer number between -100 and 100
If the module is not dimmable, zero is treated as off, anything else is treated
as on. For a dimmable module, a negative number is treated as a request to
dim the module by the specified percentage while a positive number is treated
as a request to brighten the module by the specified percentage. The resultant
value of the module depends on the previous value and it is a number between
0 and 100.

on directly followed by a number between -100 and 100
For a non-dimmable module, this is equivalent to on. For a dimmable mod-
ule, this is a request to set the module to the indicated absolute brightness
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percentage. If the specified brightness is negative, it is subtracted from 100.
The module is first turned off, then (fully) on, and finally it is dimmed by 100
minus the specified brightness. The resultant value of the module is equal to
the specified brightness.

Incremental dimming and brightening changes the value of the module by incrementing
it or decrementing by the specified count, but never below 0 or above 100. Usually, this
value gives only a very approximate idea of the actual state of the module and should be
used with a large grain of salt. Note that the value of a module that has been bright-
ened/dimmed is never on or off, even if it was on when the module was brightened or
off when it was dimmed. A module in this state can be turned on or off, and then its
value will become on or off, respectively.

Example

Below we list a few sample sensor commands addressed to X10 modules.

invoke $tv setValue on

setall on50 Lamp1 Lamp2 Lamp3

invoke $lamp setValue -20

Note that Lamp1, Lamp2, and Lamp3 are symbolic names of modules whereas $tv and
$lamp are sensor handles. Naturally, all we said about the legitimate format of a setValue
argument also applies to the first argument of setall (section 5.2.2).

5.3 The action loader

When the sensor mechanism of SICLE is switched on (section 3.1), the program automat-
ically configures a server, visible as a TCP/IP port, that can be used to perform remote
operations on sensors, check their status, or even upload into the SICLE program new
processes (actions) dynamically. This is why the server is called the “action loader,” al-
though in most cases it is used to pass simple commands rather than load actions. The
commands accepted by the server look like lines of texts which can be comfortably entered
by hand, e.g., using telnet. The standard port number of the server is 3766. It can only
be changed by editing a constant in the package header.

5.3.1 Authentication and session format

The action loader can handle multiple session at the same time. Immediately after receiv-
ing a connection request, the loader sends the following line of text to the client:

SICLE Action loader ver listening:
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where ver stands for the version number of the package. This line indicates that a con-
nection has been established: the loader is ready to accepts commands.

The first line entered by the client is ignored. Together with the beginning of the next
(second) line, the action loader uses it to determine the client’s convention for the end-of-
line sequence. The second line arriving from the client should be the authentication line
with the following contents:

auth username password

where the arguments should identify a user authorized to ask the loader for service. These
arguments will be matched against the contents of the file named users that should be
present in the directory in which the SICLE program was called. It consists of lines of
texts, each line containing a pair of tokens: a username and a DES-encrypted password
with “salt”—in the convention of encrypting passwords in most versions of UNIX. For
example, the users file for the SICLE program controlling my home lights and appliances
consists of a single line that looks like this:

pawel Jh3GyUKVNS4ps

If the users file defines more than one user, all these users have the same rights, except
for accessing actions (section 5.3.3). If the users file is absent or the specified user name
and password do not match one of the lines in users, the authentication fails and the
loader closes the connection.

One way to create an entry in the users file is to copy a user name and the associated
encrypted password from a UNIX passwd file. Some other commonly available tools, e.g.,
the htpasswd program that comes with web server’s, can also be used for this purpose.
SICLE offers the following two functions that can be used for implementing DES-based
authentication:

crypt plaintext
pmatch encrypted plaintext

The first function takes a plaintext string and returns its DES-encrypted version with
salt, to be used as a stored password. Upto eight initial characters of the plaintext string
take part in this operation. The second function returns 1 if the specified plaintext string
matches the encrypted version, and 0 otherwise.

Example

To encrypt a password, e.g., for an entry in the users file, you can type the following
sequence of commands:

tclsh

package require siclef 1.0

crypt trykowka
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The produced string is a “salted” encrypted version of the specified password which can
be used directly in a users file entry.

In response to auth, if the authentication was successful, the action loader outputs the
following line:

990 Authentication OK

and becomes ready to accept other commands. Otherwise, it diagnoses the problem, e.g.,

001 Authentication failed

and terminates the connection.

Note that the action loader will close a session in progress after 10 minutes of inac-

tivity (no commands) on the client’s part.

All replies from the loader start with a sequence of three digits identifying the reply,
followed by a text explaining what has happened. This way, the replies can be easily
processed by a program and, at the same time, are legible to a human user communicating
directly with the loader. A similar approach is used, e.g., in SMTP.

If the first of the three digits of a message code is 9, it indicates a successful execution of
the last command. Sometimes a message will carry additional information, i.e., a reply to
the last command, following the message code. In all cases, the message code determines
the format of that reply.

If the first of the three digits of a message code is not 9, it indicates a special message
which may be an error message or a status report (code 077—section 5.3.2). Different
error messages have different message codes, which we will list with the commands.

5.3.2 Simple commands

Below we present the basic commands accepted by the action loader (the ones that do not
deal with actions). Loading and monitoring actions is the subject of section 5.3.3. Each
command takes a single line and terminates with the end-of-line sequence appropriate for
the connecting client.

turn sensor value

This command sets the value of the indicated sensor/actuator. Of course, the sensor
must be specified by its name—as assigned in the map file (section 5.1). Possible replies:

997 OK

009 No such sensor

010 Sensor tag and value required

011 Failed
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The third message indicates a command format error, the last one is returned when
setValue for the sensor is aborted for whatever reason.

show sensor

This command returns the current value of the named sensor. Possible replies:

996 Value: value
008 Sensor tag required

009 No such sensor

note how s1 ... sn

This command sets up or cancels notifiers for the indicated sensors. If no sensors are
specified, i.e., the s1 ... sn part does not occur, the command refers to all sensors defined
in the map file (section 5.1).

If how is add, it means that the client wants to be informed whenever the value of any
of the indicated (or all) sensors changes. If this happens, the loader will send the following
status message to the client:

077 sensor value

where sensor is the symbolic name of the sensor whose value has changed, and value is
the new value.

Note that following a note command, the client must be prepared to receive asyn-
chronous messages from the action loader that will arrive spontaneously rather than as
responses to explicit commands.

If the how argument is cancel, the command removes the notifiers for the specified
(all) sensors. Following this command, no more update messages regarding the indicated
sensors will be arriving from the loader.

Possible replies:

997 OK

012 Notifier action required

013 Invalid notifier operation

Both error messages indicate formal errors in the command, e.g., the first argument being
something different from add or cancel. A non-existent sensor appearing on the argument
list is silently ignored without raising an error condition.

idle
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This command takes no arguments and it does nothing (it triggers no reply). Its sole
purpose is to indicate to the loader that the client is still alive. Note that if the client
doesn’t issue a command for 10 minutes, the loader will close the connection.

exit

This command terminates the session and closes the connection. There is no reply.

Example

Below we list a sample telnet session with the action loader. User typed-in commands
are in teletype font while the system replies are in italics.

telnet sheerness.cs.ualberta.ca 3766

SICLE Action loader 1.0 listening:
Hi there!

auth pawel dyrdymala

990 Authentication OK
turn tv on

009 No such sensor
turn TV on

997 OK
show TV

996 Value: on
note add Motion1 Motion2

997 OK
077 Motion1 off
077 Motion2 off
idle

idle

077 Motion1 on
077 Motion1 off
077 Motion2 on
idle

077 Motion2 off
turn TV off

997 OK
077 Motion1 on
note cancel

997 OK (2)
exit

Connection closed by foreign host.
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Note that the first line accepted by the loader (Hi there!) is ignored. Following the
note command, the loader immediately responds with the current status of the indicated
sensors and then only reports the changes. The OK reply after cancel gives in parentheses
the number of canceled notifiers.

5.3.3 Actions

Action loading is best performed from a program, but in principle it can be done manually,
e.g., in a telnet session. An action is essentially a SICLE process (or rather a process
code method) together with a trigger condition. The trigger condition specifies when the
action should become active.

Let us have a look at how an action is loaded. This operation is started by the client
with the following argument-less command:

load

In response, the loader sends the following line (the only possible reply):

999 Proceed

which indicates its readiness to accept the action.
Following this reply, the loader will be accepting the subsequent lines arriving from

the client as components of the loaded action, until it encounters a line containing . as
the only character. This character will not be stored as part of the action, but it will
terminate the load operation and revert the loader to the command mode.

The action body should look like the interior of a hypothetical process code method,
i.e., something that could be sensibly put between

process ... {

and the matching closing brace. The action may assume that the State attribute of the
encapsulating process is already visible and that its first value will be Start (as for a
regular process). No other attributes are provided by default, but of course the action can
create them and reference (e.g., with useown) as needed.

The action body may (but doesn’t have to) be preceded by a trigger, i.e., a condition
that will start up the action. If a trigger is present, it should be separated from the action
body by +++ (three consecutive pluses). A trigger-less action is started immediately after
being loaded.

Example

Suppose that we would like to load an action that on every Saturday at 9:00 p.m. will
launch a watchdog monitoring two motion detectors and raising an alarm when any of
them goes off. The watchdog will deactivate itself in three hours, i.e., at midnight. This
is a complete telnet session that does the job (system responses are in italics).
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telnet sheerness.cs.ualberta.ca 3766

SICLE Action loader 1.0 listening:
Hi there!

auth pawel dyrdymala

990 Authentication OK
load

999 Proceed
[cdate match "Sat .*21:..:"]

+++

useown Until M1 M2 Alarm

global Hour FiveMinutes Timer

switch $State {
Start {

set Until [expr $Hour * 3]

set M1 [sensor Motion1]

set M2 [sensor Motion2]

set Alarm [sensor AlarmSwitch]

monitor $Timer $Until Done

proceed Watchdog

}
Watchdog {

if [sense any on Motion1 Motion2] {
proceed GoOff

} else {
wait $M1 Attention Watchdog

wait $M2 Attention Watchdog

}
}
GoOff {

invoke $Alarm setValue on

wait $Timer $FiveMinutes SwitchOff

}
SwitchOff {

invoke $Alarm setValue off

proceed Watchdog

}
Done {

invoke $Alarm setValue off

hibernate

}
}
.
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991 ec8
exit

Connection closed by foreign host.

After an action has been successfully loaded, the action loader returns to the client code
991 (as in the above example) followed by a piece of text representing the action’s handle.
Using this handle, it is possible to monitor the action status or kill the action when it is
no longer needed. An action loaded by one user (section 5.3.1) can only be monitored and
killed by the same user.

If the loaded action appears syntactically incorrect, the loader will send the following
line to the client:

005 Action failed: message

and ignore the action. The text after the colon will explain the problem.
The trigger condition for the action from the above example is described by a call to

cdate. The general format of this call is

cdate how date

where how determines how the following date argument is interpreted. If how is match, the
date argument is a regular expression pattern to be matched against the date as returned
by the following expression:

[clock format [clock seconds]]

For example, this is what the above expression returned at the time when I was writing this
line: Wed Oct 14 13:11:10 MDT 1998. If the current date matches the specified regular
expression, cdate returns 1, otherwise it returns 0.

The remaining legal values of how are: earlier, later, notearlier, and notlater.
In all these cases, the date argument should be a valid textual representation of date/time
as recognized by clock scan. The function returns 1 or 0 depending on whether the
current date is earlier, later, not earlier, not later than the specified date.

Trigger conditions for actions are checked every 10 seconds. Note that in principle
such a condition can be any Boolean expression.

An action can terminate (as a regular process), or it can hibernate (as the above
action). A terminated action is removed from the set of actions and deallocated. A
hibernated action becomes dormant awaiting another occurrence of the trigger condition.
An action that has terminated, although it is deallocated and removed, leaves its trace in
the loader until the terminated status of the action can be presented to the user.

An action that hits an error during its execution is automatically (and gracefully)
terminated without crashing the loader. Note, however, that in the present prototype
version of SICLE, actions are not separated from their environment in an absolutely
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foolproof way. Therefore, it is possible for a malicious action to damage the state of the
loader in an unrepairable way, although this seems to require destructive intentions on the
user part.

Besides load, two other commands of the action loader deal with actions. One of them
is stat. If if used with no argument, it polls the loader for the status of all actions loaded
by the authenticated user. In reply, the loader sends a line looking like this:

995 (h1: status count) ... (hn: status count) end

where the first element of each parenthesized sequence is an action handle, and the re-
maining two element indicate the current action status (1–active, 0–hibernated), and the
number of times the action has changed its status from hibernated to active (on the trig-
ger condition). For a terminated action, status and count are replaced with a message
indicating how the action terminated. If this message is done, it means that everything
went fine, otherwise the message gives a description of the error condition.

The optional argument of stat can identify a single action (by its handle, as returned
by the loader when the action was submitted). In that case, the loader returns one of the
following replies:

007 No such action

008 Not owner

994 status count
992 Action terminated: message

In the last case, message is either done or it describes the error condition that termi-
nated the action.

Example

As soon as the status of a terminated action has been presented to the user, this status
information is removed from the loader. This is illustrated by the following two inquiries:

stat ec8

992 Action terminated: done
stat ec8

007 No such action

Actions can be forcefully terminated by the kill command which handles one action at
a time. Its mandatory argument identifies the action to be killed. In response, the loader
will send one of the following lines:
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006 Action handle required

007 No such action

008 Not owner

992 Action terminated

993 Already terminated: message

The last response is produced when the action is already terminated (with its com-
pletion status pending) when the kill command is issued. The pending completion status
of the action is erased, as after stat. Note that if an action is terminated with kill, its
completion status is not remembered, i.e., a subsequent stat call will fail to locate the
action.

6 Additional features

In this section we list some of the more obscure (and perhaps less useful) features of
SICLE which have not been mentioned in the preceding sections.

6.1 Program call arguments

A SICLE program accepts two standard program call arguments, which are interpreted
by the sicle function (section 3.1). One of them is -s followed by a file name (section 5.1)
specifying a non-standard name of the sensor map file. This argument is only relevant if
sicle has been called with an argument containing sensors as a substring (section 3.1).

The other argument is -d optionally followed by a file name, - or --. This argument
identifies the input file to be used by the program (section 6.2). If -d never occurs in the
argument list, no standard input file is opened, although, of course, the program may still
read whatever data it pleases using its private means.

If -d is followed by a double -, or if it isn’t followed by anything, the input file is
named data.txt, which can be viewed as the standard name of the input file. If -d is
followed by a single -, the input file is equivalenced with the standard input.

The call arguments interpreted by sicle are terminated by a double - (or by the end
of the argument list). If the program wants to use some private call arguments, they
should be specified (and sought) after the double -.

6.2 Input file

The input file (section 6.1) is intended to provide the SICLE program with some data,
other than the sensor map (section 5.1). The input file (if one has been specified in the
program call line—section 6.1) is opened by sicle and closed by kernel (section 3.1);
thus, it can only be used in the setup phase, before the initial processes created by the
program are started. The file cannot be read directly, but only with the following SICLE

functions:
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skipinput pattern

The argument is a regular expression pattern. The function skips the input file until
the first line containing a string that matches the specified expression. Then, the file is
positioned at the first character following the matched string at the matched string is
returned by the function. If the function hits the end of file, it returns an empty string.

readnum how

The function skips the input file until the first occurrence of a number and returns the
number. The file is positioned at the first character following the number. Argument how
tells the function what kind of a number we are looking for. It can be int (the default),
hex, or flt. The syntax of hexadecimal and floating point numbers is that accepted by
Tcl expressions. If the function hits the end of file, it returns an empty string.

readstring pattern1 pattern2

This function first calls skipinput with pattern1 and then extracts from the located
string the portion specified by pattern2 (which is another regular expression). If the
function hits the end of file, or if the string located by skipinput doesn’t match pattern2,
an empty string is returned.

6.3 Logging and debugging

Yet another standard file available to a SICLE program is the log file. The standard name
of this file is siclelog. It contains information written by the following operation:

log string

The specified string is written to the log file and followed by the end of line character.
In front of the string, SICLE prepends the current time.

The log file is opened by the first call to log. If the program doesn’t use the standard
log file, it will not be created.

The default parameters of the log file can be changed by calling the following function:

setlog fname lines versions

The first argument specifies the name of the log file. If this name is different than
the previous name, and the log file has been used (written to) already, the current file is
closed and a new file is openened. If fname is an empty string, logging is disabled, i.e.,
the log operation will be void until a new non-empty name is defined by another setlog
operation.
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The remaining two arguments are optional and default to empty strings. If they are
nonempty, they must be both nonnegative integer numbers. An empty value retains the
previous setting of the argument.

If the log file is to be automatically rotated, lines specifies the number of lines that
must be written to the file before its new version is started. The default setting of this
parameter is 0, which stands for “no limit,” i.e., by default log rotation is disabled.

The last argument gives the number of versions of rotated files. The minimum value
is zero (this is also the default), which indicates two versions: the current version and one
old (previous) version. Old version are named as the current version (fname) with suffixes
.1, .2, and so on.

Note that when the server is terminated and then started again, it will continue writing
to the last (current) log file with the line count initialized to zero. This way, the file may
significantly exceed the line limit before it is rotated.

The debug version of the package (sicled—section 1.4) verifies the arguments and
environment of all SICLE functions and methods as they are being called. It also keeps
track of 40 most recent calls. If the program gets aborted, file debug (created in the
dirctory in which the program was called) will contain the trace of last 40 function calls
with their object handles and arguments. Note that only SICLE functions are traced this
way.

6.4 Miscellaneous functions

In several sections of this manual we mentioned the function defined whose purpose is
to test various conditions, primarily dealing with SICLE objects and types. Below we
describe the full syntax of this function.

defined how where what

The second argument can be one of the following:

class

The function returns 1 if where is a valid class type, and 0 otherwise. The
third argument is ignored.

valid

The function returns 1 if where is a valid object handle pointing to an existing
object, and 0 otherwise. The third argument is ignored.

method

The function returns 1 if what is a valid method of the class type identified by
where, and 0 otherwise.
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qualify

The function returns 1 if where is a class type that has been qualified (sec-
tion 2.2) as what, and 0 otherwise. If what is not specified (or equal to an
empty string), this option behaves exactly as class.

is

The function returns 1 if where is a valid object handle pointing to an existing
object whose type has been qualified (section 2.2) as what. If what is not
specified (or equal to an empty string), this option behaves exactly as valid.

constructor

The function returns 1 if where is a valid object type with at least one defined
constructor, and 0 otherwise. The third argument is ignored.

destructor

The function returns 1 if where is a valid object type with at least one defined
destructor, and 0 otherwise. The third argument is ignored.

attribute

The function returns 1 if where is a valid object handle and what is an attribute
associated with that object (it can be an array name).

belongs

The function returns 1 if where is a valid object handle and what is the class
type of that object.

callable

The function returns 1 if where is a valid object handle and what is a defined
method for the object’s type.

sensor

The function returns 1 if where is a valid sensor name defined in the map file
(section 5.1).

The following function returns the time of day in a compressed, purely numeric form:

telltime how

If how is full (the default), the result consists of exactly six digits hhmmss. If how is
minute, the ss part is absent, i.e., we do not care about seconds. Finally, if how is hour,
the results has only two digits representing the hour in the 24-hour notation.

SICLE offers the following three functions for generating random numbers:
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rndinit seed

The function initializes the random number generator based on the specified integer
seed.

random

The function returns a floating point pseudo-random number between 0 and 1.

irandom range

The argument is a positive integer. The function returns an integer pseudo-random
number between 0 and range-1 inclusively.


