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Abstract

We describe Divalia, a new peer–to–peer (P2P) file ex-
change framework that targets mobile wireless ad–hoc net-
works. The framework supports anonymous transfers, to
protect user privacy, as well as pre–authentication of data
to be received, to reduce the likelihood of spoofs and the
resulting bandwidth wastage. Divalia is composed of two
parts: the Hash Set Dual-Request Protocol, to challenge
a would-be provider to prove the possession of the re-
quested file; and, a form of Direct Anonymous Broadcast,
for anonymous acquisition of information to be used for the
challenge. One goal of this paper is to demonstrate how an
original and secure P2P system can be constructed within
the constraints and opportunities of mobile wireless ad–
hoc networks through the use of well known and extensively
studied component cryptographic methods.

1. Introduction

We present a scheme for anonymous data exchanges
geared to the requirements and opportunities inherent in
mobile wireless ad–hoc networks. The scheme implements
data transfers between peers within direct communication
range, forming the peer–to–peer (P2P) component of the
proposed protocol; but, it discovers information about data
files using a form of controlled flooding, exploiting the ad–
hoc nature of the network topology. We assume that there
exists no preassigned or centralized trusted authority. More-
over, the user population is dynamic and unknown a priori.

We opt for P2P data transfers due to the well understood
scalability problems of ad–hoc networks, as introduced by
Gupta and Kumar [1] and extended by many others. Traf-
fic routing over many hops is the key cause of these prob-
lems. Thus, we relax the notion of routing by exploiting the

mobility of nodes to act as carriers of data and perform ac-
tual data exchanges during (short–lived) encounter episodes
with the destination(s). This approach is in line with the ob-
servations of Grossglauser and Tse [2] for scalable ad–hoc
networks that sacrifice delay for the benefit of throughput.
Certainly, not all applications fit in this routing paradigm,
which has come to be known as delay tolerant network-
ing [3]. However, the application we consider naturally fits
in the delay tolerant networking context.

Specifically, the application we consider is the delivery
of large data files (often containing audiovisual data) to mo-
bile users. The scarcity of wireless bandwidth suggests that
we should avoid multiple hop routing as much as possible,
while the constant mobility of nodes renders ineffective any
notion of data retrieval based on single session communi-
cation with an originator/server node. The application can
be thought of as follows: Mobile users indicate a set of files
as items of interest. While roaming about, the mobile de-
vice can collect the desired file (plus any relevant metadata)
via opportunistic short–lived partial file transfers. The en-
tire file is not necessarily received from the same node, but
rather assembled from the partial transfers over a possibly
large number of encountered peers. Also, in true P2P fash-
ion, nodes act both as clients and servers.

The delay incurred for receiving an entire file is not
as important to the application as the integrity of the re-
ceived data. However, we cannot assume that a user knows
much more than a vaguely descriptive (humanly readable)
name for the item of interest. The first challenge is to ob-
tain more meaningful fingerprint information for the desired
file. To accomplish this, we separate the fingerprint acqui-
sition from the actual file data transfers. Locating finger-
print information is accomplished through the use of TTL-
scoped flooding. At first, flooding may appear contrary to
our scalability objective, but its inclusion is predicated on
two observations: (a) by requesting information about a file



from many nodes, rather than just from single hop neigh-
bours, tricking a node into accepting an irrelevant finger-
print as a correct one (by returning frivolous replies) re-
quires collusion from a large number of nodes; and (b) prag-
matically speaking, the fingerprint acquisition messages are
short compared to the actual data transfers – hence, in abso-
lute numbers, it is an acceptable overhead. We also hasten
to add that control over the TTL can fine tune how much
network overhead the fingerprint acquisition introduces.

The security objectives of the scheme are to preserve
user anonymity and to avoid receiving garbage. In order
to maintain a requester’s privacy, a peer that does not pos-
sess the requested file is unable to send garbage, to discover
what the requesting node is asking for, or even to determine
if and when the particular segment requested is being trans-
mitted. It is worth noting that by communicating with its
direct peers, a requesting node’s actions are inherently kept
more private. Typically, albeit not always, users within that
radius can make visual contact, which, though not guaran-
teed, can be reassuring (it plays the role of “soft authentica-
tion” in traditionally understood personal connections).

We note that existing Internet–based P2P file exchange
systems operate under incomparably less stringent band-
width constraints than in the mobile wireless environment,
because they assume the existence of a wired communica-
tion infrastructure. Thus, in contrast to the environment we
consider, in a wired environment anonymity can be accom-
plished at the expense of increased bandwidth overhead.
The case in point is mix networks [4, 5, 6], that cryptograph-
ically guarantee the untraceability of the message source
and disguise the message from all intermediate nodes. In
addition to bandwidth overhead, all solutions in this class
assume relative stability of the network infrastructure and
pre-established trust of at least some participants, which are
all absent in a mobile wireless ad–hoc network. Anonymity
schemes used in certain other P2P systems like Napster and
Kazaa are weak, as anonymity is achieved by obfuscation
and volume rather than cryptography.

The issue of data integrity also plagues P2P systems, as
there is limited confidence in the authenticity and quality of
the exchanged files. Frequently, it is not possible to deter-
mine whether a downloaded file contains the desired content
until after it has been entirely received and viewed. Clearly,
in a wireless environment, downloading content which is
not what it purported to be adds insult to injury, resulting
in valuable bandwidth and battery power being wasted. To
address the data integrity issue, fingerprint information of a
file is collected before the actual transfers. While finger-
print information bears no stronger a guarantee that it is
correct than the actual file, the relatively small size of the
fingerprint information and the use of a flooding protocol
allows a host to collect multiple fingerprints for the same
file without a large overhead. The fingerprint collection can

be performed over a range of time and space (the latter due
to mobility) to the node’s satisfaction. Consulting multiple
sources provides resistance to collusion–based attacks. It
is the task of the node to decide whether agreement of fin-
gerprints (or a majority of them) from multiple sources is
sufficient to warrant trusting them as being correct. Alter-
natively, the node can eliminate certain fingerprints by us-
ing some form of ranking (e.g., reputation–based schemes
such as CORE [7]). In this paper we are interested in pro-
viding the protocol framework to accomplish the fingerprint
acquisition, while the particulars of ranking and/or reputa-
tion schemes are left outside the scope of the paper.

The rest of the paper is organized as follows: in sec-
tion 2 we introduce some general assumptions about the ap-
plication, the node identities, and the mechanism of Direct
Anonymous Broadcast. We also present an overview of Di-
valia. We then discuss the two distinct stages of Divalia
in greater detail: fingerprint acquisition in section 3, and
segment acquisition in section 4. Finally, section 5 provides
some concluding remarks and directions for future research.

2. Overview and Assumptions

Suppose that a user, Alice, wishes to retrieve a file from
a peer within her transmission range in an ad-hoc wireless
P2P network. The requested file may reside at a subset of
Alice’s peers. Note that we use the term peer to denote all
direct (single–hop) neighbours. Because peers are mobile
and can be continually entering and leaving Alice’s range,
it is unreasonable to expect that the entire file can be down-
loaded from one and the same peer. It is therefore assumed
that files are partitioned into segments, allowing the user
to request and download individual segments from various
peers and reassemble the segments at the end. We will use
the following notation: F will denote an arbitrary file of
length L bytes (indexed from 0 to L − 1). We define the
following:

• H(F ) denotes the hash of the entire F ’s contents.

• H[i,j](F ) is the hash of the fragment of F starting at
the i–th byte and ending at the j–th byte.

• Hi(F ) is the hash of F’s i–th segment. If the (fixed)
segment size is S, then Hi(F ) = H[(i−1)S,iS−1](F ).

We shall omit the parameter F when the file context is clear.

2.1. Addresses and Identities

In all communication between peers, we view the peer
identities (coming from upper layers) as separate from data
link layer addresses. By not relating the data link addresses
to node identity, an extra level of security is achieved (albeit



via obscurity). Namely, the data link address used by a de-
vice can be selected at random upon powering up. As long
as the data link layer addresses are not trivially short, the
probability of collision with addresses of other peers within
a node’s range is acceptably small (and even then it can be
resolved). For example, the 802.11 standard provides for
Locally Administered Addresses that could, potentially, be
assigned from a uniform random pool.

One can reasonably postulate that the requests and re-
sponses described in our scheme are conveyed as data link
layer broadcast frames, thus obfuscating the identity of the
receiving endpoint. The benefits of this approach are lim-
ited because an eavesdropping node that knows the protocol
can analyze the relationship between requests and responses
and thus determine the endpoints. Moreover, if all transmis-
sions are data link layer broadcasts, all nodes will be forced
to formally receive and process all receivable frames up to
layer 3, which will cause unnecessary energy consumption.

Added concealment is provided through a semi-
permanent obfuscated sender’s address assigned randomly
upon power up and remaining valid until the node shuts
down. Therefore, other than when the data link layer des-
tination has to be a broadcast address, using a locally sig-
nificant data link address in the source and destination ad-
dress fields hides any information about the true ID of the
communicating nodes as far as the data link layer activity
is concerned. (This technique is unrelated to Cryptographi-
cally Generated Addresses, e.g., as defined for IPv6 [8]).

2.2. Direct Anonymous Broadcast

To allow Alice to acquire file fingerprints anonymously,
we adapt an idea presented by Stajano [9], which states that
by removing the “from” field in a broadcast packet’s header,
the sender can essentially remain anonymous. Even though
this flavour of anonymity is far from being mathematically
provable, Stajano successfully argues that tracing a trans-
mission to its sender by measuring the signal strength, tim-
ing, and phase of the transmitted packets is at least a diffi-
cult, inaccurate, and expensive operation. At the very least,
a group of nodes would have to conspire to triangulate the
sender and then make a visual identification of the person
holding the mobile device.

Technically, the sender address field cannot be removed
from the data-link frame; the data link protocol requires that
an address be present. This is one reason why we earlier
(section 2.1) advocated the use of random semi–permanent
data link layer addresses. By disassociating logical IDs
from data link layer addresses, transmissions become es-
sentially anonymous (technically they are pseudonymous,
where the pseudonym is the assumed data link layer ad-
dress) while still being well–formed as far as the data link
layer protocol is concerned.

In principle, a node’s data-link address can be changed
whenever there is no need to maintain data-link connectiv-
ity, e.g., upon completion of a file transfer. Note that the
discovery messages are always broadcast, and hence always
received by directly connected peers. It would have been
possible to use different random source address for each and
every transmitted frame but this would have been an overkill
because responses to such transmissions would have to be
broadcast data link layer frames; inflicting an unreasonably
high overhead to all nearby nodes.

2.3. Protocol Stages

What Alice starts with is a file name, or a short, fuzzy de-
scription of the file that she wants. How can she be reason-
ably confident that the segment to be received in response to
her request will contain a portion of the desired file, rather
than, say, a pornographic advertisement? Clearly, if all Al-
ice knows about the file is a few keywords, and the (un-
known) sender simply claims to have the segment, Alice
should be prepared for a disappointment.

To enforce the seriousness of her peer’s offer to provide
segments of a file, Alice must acquire more information
about the requested file than a plain-text name-like descrip-
tion. The information possessed by Alice, i.e., the finger-
print, should allow her to challenge the sender before com-
mencing the download. The sender should convince Alice
that he/she owns the requested file segment. Moreover, to
protect Alice’s privacy, she must know something about the
file that would let her identify it to an owner without reveal-
ing the file name to everybody in her neighbourhood.

The underlying idea of our proposed scheme is to com-
pletely separate the acquisition of the fingerprint from its
presentation to a prospective segment provider (this scheme
is related to the RASH protocol [10]). If Alice wants to
download a file segment, she has to obtain first the requi-
site fingerprint. This operation is carried out in a way that
preserves Alice’s anonymity. In the second stage (the ac-
tual segment acquisition), Alice presents the fingerprint in a
way that renders it useless to anyone who does not possess
the file. In addition to playing the role of a secret file iden-
tifier, the fingerprint is also used as a challenge to which
the prospective sender has to respond – to convince Al-
ice that the offer is serious. Alice accomplishes this goal
by presenting only part of the fingerprint to a prospective
segment-provider, and challenges him/her to fill in the miss-
ing pieces. That is, it is imperative that the entirety of the
fingerprint data Alice collected does not fall into the hands
of users unable to provide the corresponding file segments.

The operation of acquiring the fingerprint, by the virtue
of being relatively cheap (in terms of bandwidth) and safe
(in terms of privacy), can be repeated several times, possi-
bly at different times and in different environments. It can



also be arbitrarily far separated in time from the segment
acquisition stage. Thus, before deciding to download the
segment from an unknown peer, Alice can establish consid-
erable faith in the authenticity of the fingerprint. An attack
on the privacy of the complete file acquisition would require
a collusion of a large number of users over a long period of
time. As Alice’s identity is unknown during the fingerprint
acquisition stage, such a collusion would be very difficult.

Each of the two stages needed for a successful segment
download can be divided into two steps. In particular, the
fingerprint acquisition stage consists of 1) the request for a
fingerprint issued by Alice and 2) the reply to Alice’s re-
quest arriving from nodes that possess the file. Similarly,
the download phase starts with 3) Alice’s request for a seg-
ment matching a given fingerprint and 4) the actual segment
transmission. Each of these four steps needs to be sepa-
rately safeguarded. We will not deal here in detail with
the privacy of the fourth step as it can be readily accom-
plished using well known cryptographic techniques (e.g.,
the Station-To-Station Protocol [11]). We shall focus on the
first three steps. One should note that each of the four steps
can be repeated on-demand, and as often as necessary, to
cope with the intermittent character of mobile wireless con-
nections. Naturally, a peer can play both the role of sender
and receiver of data files. That is, once Alice has completely
received a file, she may very well offer the file to others.

3. Fingerprint Acquisition

The first stage of the scheme allows Alice to transform
the name of the file she is searching for into a fingerprint.
Alice starts with the file name or description, and ends up
with the following: the hash value for the complete file H ,
a hash value for each segment of the file, {Hi ∀i}, and
hash values of two random fragments of the file H[j,k] and
H[m,n]. We define a fingerprint for the file F as:

P (F, j, k, m, n) = {j, k,m, n, H[j,k],H[m,n]} .

The values H and {Hi ∀i} are supplementary to the finger-
print, and are used after receiving a segment to confirm that
Alice actually received the desired segment or file correctly.

If anonymity were not a concern, the fingerprinting
would not be needed. Consequently, the fingerprinting itself
must be implemented in a way that preserves the anonymity
of Alice’s request. Needless to say, if Alice just broad-
cast the file name for which she wanted a fingerprint, she
would reveal her intentions to all peers in her neighbour-
hood. Note that any obfuscated variant of the file name
would be equally revealing of Alice’s intentions. For exam-
ple, the hash of the file name, or even the hash of the entire
file (assuming they are known via a directory lookup or pre-
existing advertisements) would be equally weak. This is

because anybody could easily obtain them (in the same way
as Alice) and store them in dictionaries, e.g., for the purpose
of fooling requesting peers into accepting trash. However,
Alice cannot tell in advance which of her current peers will
respond to her query. Hence, the request must be unavoid-
ably broadcast, and is thus exposed to all nearby nodes.

3.1. Basic Fingerprint Acquisition

We start by presenting a simple protocol by which Al-
ice can acquire a fingerprint for a file she wishes to retrieve.
There will be several security flaws with this basic protocol;
however, for clarity of exposition, we present this basic pro-
tocol first, then describe how the security holes can easily
be closed in the subsequent section (section 3.2).

When Alice wants to acquire a fingerprint
P (F, j, k, m, n), she anonymously broadcasts to her
peers the following query:

QAlice = {filename, TTL, q, a, b, c, d},

where a, b, c, and d are random integers chosen by Alice,
q is a random nonce, and TTL is a time-to-live initialized
to some random value in [Tmin, Tmax]. When Bob receives
such a request, he does one of two things. If he has no
file matching the filename, he decrements the TTL counter,
and, if it is still positive, he rebroadcasts the request to his
neighbours. Otherwise, i.e., if TTL has reached zero, Bob
does not forward Alice’s request.

If Bob happens to possess a file F of length L bytes
named N (where N matches the filename specified by Al-
ice, to within some heuristic that is beyond the scope of this
paper), he replies by broadcasting (anonymously):

RBob = {q, TTL, N, L, H, {Hi ∀i}, j, k, m, n,

H[j,k],H[m,n]}

where L is the length of the file and TTL is set to a ran-
dom value in [Tmax, Tmax + ∆]. Note that the TTL setting of
Bob’s reply is guaranteed to be at least as large as Alice’s
initial value, to give the message a good chance of mak-
ing it all the way back to Alice (even if Alice has moved in
the meantime). Finally, G(L, a, b, c, d) = {j, k,m, n} is a
deterministic, globally-known function G with the property
that j<<k, m<<n, and 0 ≤ j, k,m, n<L.

By having Alice choose the four random numbers a, b,
c, and d used for selecting the two portions of F to hash,
she can be certain that the hashed portions of F are actually
random. The role of G is to account for Alice not knowing
the length of the file when she chooses her four random
numbers; however, since she learns L at the end, she can
confirm that Bob has honestly converted a, b, c, and d into j,
k, m, and n by applying G to her own selection of numbers.
We discuss choices for the function G in section 3.2.



When a node receives Bob’s message, it checks whether
it has seen previously, within some time interval, a request
containing the nonce q. If so, the node will rebroadcast the
reply; otherwise, it will ignore Bob’s message.

This way, Alice is able to gain information from distant
nodes about files she wants to download, without reveal-
ing her identity. Similarly, Bob can provide the information
without revealing his identity. This concept of a chain of
broadcasts with unknown endpoints is based on the trans-
mission model of Freenet, a wired peer-to-peer system [12].

Two caveats to this protocol have to be addressed. First,
Bob may reveal to his neighbours that the peer providing
the fingerprint is in their immediate vicinity, because his
neighbours do not hear him retransmit the original request.
Therefore, it would be prudent for Bob to first rebroadcast
Alice’s request and then, after a randomized delay, broad-
cast his answer. Similarly, Alice should rebroadcast Bob’s
reply – to disguise that she happens to be its recipient.

The second issue is that Alice’s fingerprint information
is now public knowledge – anyone along the path from Bob
to Alice will know P (F, j, k, m, n), even though they may
not possess the file sought by Alice. It is essential that nodes
unable to provide Alice segments from a given file do not
acquire all of Alice’s fingerprint information for that file. A
solution to this problem is discussed next.

3.2. One-Time Keys

Alice can prevent everyone along the path from Bob to
her from discovering her entire fingerprint by using a one-
time public-private key pair. Ahead of time – perhaps when
she is docked, so energy is no concern – Alice can generate
a large set of public-private key pairs. For a given pair, let
O denote the open (public) key and U the secret key.

In her initial broadcast, Alice includes O, i.e., she sends:

QAlice = {filename, TTL, q, a, b, c, d,O} .

Let l be the bit length of the binary representation of each
of the four random numbers a . . . d. Let abcd be the bitwise
concatenation of those numbers and let M be a MAC func-
tion (a keyed hash function) with an output of length 4l bits.
Bob computes εζηθ = MO(abcd) and responds with:

RBob = {q, TTL, N, L, H, {Hi ∀i}, j, k, m, n,

EO(H[j,k],H[m,n])} ,

where:

G(L, ε, ζ, η, θ) = {j, k,m, n}.

What does this scheme buy us over the basic scheme of
section 3.1? Let us consider two attacks that Mallory could
attempt to launch against this protocol:

First, let us consider an eavesdropping attack. Suppose
that Mallory is listening along the path from Bob to Alice.
Mallory will hear the values of a, b, c, d, and O, as well as j,
k, m, and n. We do not consider useful to encrypt j, k, m,
and n because Mallory may know (or at least come up with
reasonable guesses for) L due to the distribution character-
istics of file sizes in general [13]. Mallory could compute
candidate j, k, m, and n values on her own. However, Mal-
lory is not in possession of U , so she cannot decrypt H[j,k]

and H[m,n]. At best, Mallory may be able to use the result
of Bob’s mapping of {a, b, c, d, O} into {j, k, m, n} to
discover the value of L, provided G can be inverted as such.
However, Mallory could just send out her own fingerprint
request to learn L. Hence, Mallory learns nothing useful
from an eavesdropping attack.

Next, let us consider an active attack, in which Mallory
attempts to trick Bob into revealing H[j,k] and H[m,n] to
her. Obviously, if Mallory were to playback Alice’s request
– substituting O′, one of her own public keys, for O – she
would receive a different reply from Bob, since the output of
the function M (and hence the function G) would be differ-
ent. However, we must consider the possibility that Mallory
could produce values a′, b′, c′, d′, and O′ such that:

G(L, ε′, ζ ′, η′, θ′) = {j, k,m, n}

for:

MO′(a′b′c′d′) = ε′ζ ′η′θ′ .

However, doing so would require Mallory to break the MAC
function M – that is, she would have to produce five input
values a′, b′, c′, d′, and O′ that map to a chosen output un-
der M . Assuming that we chose a cryptographically-secure
MAC function, this attack is not a concern.

It is important to note that the security of this scheme
depends on the cryptographic reliability of M , not of G.
In fact, G can be as simple a function as we wish, so long
as G(L, ε, ζ, η, θ) = {j, k,m, n} with j<<k, m<<n, and
0 ≤ j, k,m, n<L. One such function that is easy to calcu-
late and sufficient for our purposes is shown in Figure 1,
where exchange(x,y) is the trivial swap operation. It should
be clear that the function produces indices in the range from
0 to L − 1 and that j<k and m<n (by at least γ). To
avoid looping for certain “incidents” of L with respect to
γ, a practical variant of G should use several choices of γ
(and even α and β) values selectable based on L.

4. Segment Acquisition

We can now assume that Alice has access to fingerprint
information for the file F that she wishes to download.
Specifically, she knows: H[j,k] and H[m,n], where j, k, m,
n are random and j<<k and m<<n. Also, she has Hi, the



j ← ε;
k ← ζ;
m← η;
n← θ;
repeat

j ← α · j + β mod L;
k ← α · k + β mod L;
m← α ·m + β mod L;
n← α · n + β mod L;
if j>k then

exchange(j,k);
end if
if m>n then

exchange(m,n);
end if

until j + γ<k and m + γ<n

Figure 1. An example G(L, ε, ζ, η, θ) function.

hash of the i–th segment of F , ∀i, as well as H , the hash of
the contents of F .

Suppose that Alice needs the i–th segment of F . It might
seem that the proper way for her to proceed is to request the
i–th segment of the file having hash value H . The benefit
of using this scheme is that Bob1 will send Alice a segment
from his copy of F only if the contents of the file are the
same as the one for which Alice is looking. In fact, Bob will
send the segment even if his copy of the file has a different
filename than the one known to Alice.

However, this scheme only works if Bob is an honest
participant. What happens if Alice is communicating with
mean-spirited Mallory? First, using a dictionary of hash
values to files, Mallory can determine which file Alice is
seeking. Also, nothing prevents Mallory from telling Alice
that she has a file with hash value H when really she does
not. Thus, Mallory could send garbage to Alice, and Al-
ice would have to rely on confirming the value of Hi after
receipt to determine if Mallory actually sent her the file seg-
ment she requested. If Mallory did not, Alice would know
not to request files from Mallory any longer; however, the
bandwidth and battery power would be irreversibly wasted.

4.1. Basic Segment Acquisition

The hash request scheme can be improved by exploit-
ing Alice’s knowledge of H[j,k] and H[m,n]. When Alice
wishes to download the i–th segment of F from Bob, she

1Note that while “Bob” is the standard name of Alice’s peer, the Bob in
this scenario is (most likely) different from the Bob(s) participating in the
fingerprint acquisition stage.

challenges Bob by presenting a portion of P (F, j, k, m, n)
to him. Namely, she sends the following challenge:

CAlice = {j, k,m, n, H[j,k]} .

If Bob has a file matching CAlice, he responds with the value
µ(H[m,n]), where the function µ is as described in the up-
coming section 4.2. If Bob provides the correct value, Alice
proceeds, i.e., she informs Bob which segment she wants,
then downloads the i–th segment of F from Bob.

What does this scheme buy us? Let us again assume that
Alice is communicating with Mallory instead of Bob. If
F is sufficiently large, Alice’s first request regarding H[j,k]

will not reveal to Mallory which file Alice is seeking, unless
Mallory actually possesses the file. This is because, for a
sufficiently large F , it is impractical to build a dictionary
from j, k, and H[j,k] to F . In fact, Mallory will not even be
able to proceed with the protocol unless she is in possession
of F , since she will be unable to produce µ(H[m,n]).

This protocol can be supplemented with additional mea-
sures to protect the privacy of Alice and Bob. One
such measure is the Station-To-Station Protocol [11]. The
Station-To-Station Protocol is similar to Diffie-Hellman,
except that each peer must have both a public-private key
pair and a certificate signed by a trusted authority binding
the node’s identity to its public key. It should be noted that
using the Station-To-Station Protocol provides better pro-
tection against Man-In-The-Middle Attacks than the Inter-
lock Protocol [14], because the Interlock Protocol is only
useful when one node can tell if its peer is being imperson-
ated by a man-in-the-middle; it is not applicable in a wire-
less ad-hoc scenario where one would be constantly com-
municating with new, unknown nodes.

Using the Station-To-Station Protocol, Alice and Bob
can agree on a shared secret key for a symmetric encryp-
tion algorithm, which they may subsequently use to encrypt
their transmission. The requisite public-private key pairs
could be set up, hardwired, and certified by the manufac-
turer, or created by the user and certified by temporarily
plugging the device to a solid infrastructure network, i.e.,
the Internet. While this type of cryptography would not
protect Alice if she initiated communication with Mallory
(or vice versa), it would offer two honest participants pro-
tection against eavesdroppers.

4.2. Defining the Function µ

Recall from section 4.1 that when Alice challenges
Bob by presenting CAlice, Bob must correctly respond with
µ(H[m,n]), for some as-yet undefined function µ.

First, note why it is important that a function µ be applied
to Bob’s reply. Were Bob to simply reply with H[m,n], there
would be an insecurity in the system. Imagine that Bob
does not possess F . In theory, he should be unable to reply



to Alice’s challenge. However, were Bob to replay Alice’s
challenge to Carol, who has F , Bob would learn the proper
response to the challenge from Carol. He could then replay
the response to Alice, convincing her that he possesses a file
that he actually does not.

To prevent this class of replay attacks, Alice and Bob
must each generate a random bit stream of fixed length.
Specifically, Alice generates a random bit stream, XAlice,
and Bob generates another bit stream, XBob. After the two
parties commit to their random bit streams (Schneier dis-
cusses several commitment schemes [11]) and exchange
them over the encrypted channel, they define:

X = XAlice ⊕XBob .

Using this X value, the function µ can now be defined
for any string of bytes z:

µ(z) = MX(z) ,

where M is a MAC function. This definition of µ ensures
that the proper reply to a given challenge is unique each
time the challenge is made, thereby thwarting the aforemen-
tioned class of replay attacks.

4.3. Caveats of the Basic Protocol

It is important to realize that this protocol is still not
perfect. If Mallory is in possession of F , she will still
learn what file Alice was requesting. Furthermore, noth-
ing prevents Mallory from sending garbage to Alice instead
of the i–th segment of F , provided that she can produce
µ(H[m,n]). However, the protocol will at least reduce the
number of attackers who can send garbage to Alice, and Al-
ice still has the value of Hi to confirm that she was not sent
garbage.

Faced with this issue, we may ask whether it is possible
for Alice to request a file in such a way that Mallory would
not know what file is being requested, even if she has the
file. Of course, the answer to this question is no. Even were
such a scheme possible, Alice would eventually have to re-
veal to her peer, be it Bob or Mallory, in which file she is
interested (otherwise, her peer would be unable to transmit
the file to her). Hence, any two-party P2P transfer protocol
suffers from this deficiency of the basic scheme: it is even-
tually revealed to Mallory what file Alice wants, provided
Mallory has the file, and she could send some small amount
of garbage to Alice before being detected.

The other problem to note is that Bob must be willing
to spend cycles to compute H[j,k] for each file in his li-
brary for every request he receives. If this becomes too
computationally-expensive, he may be forced to perform
the computations on only a random sample drawn from his
library at each request, thus possibly missing some requests

that he could in principle fulfill. The next section inves-
tigates how this deficiency can be somewhat mitigated, at
least.

4.4. The Hash Set Dual-Request Protocol

Recall from section 4.1 that requests for file segments (as
well as the actual transfers of those segments) occur over a
channel encrypted with a symmetric algorithm, using a key
established with the Station-To-Station Protocol. The bind-
ing of a public-private key pair to a node by a certificate
in the Station-To-Station Protocol provides us with a way
to improve the basic segment-request scheme. In the new
Hash Set Dual-Request Protocol, when Alice wants to re-
quest some segments from Bob, she first constructs the set

CAlice = {C1, . . . , Cν} ,

where each Ci is a challenge for a file Fi from which Alice
wants some number of segments. Note that in principle, for
each Ci a different set of j, k, m, n could be used because
the fingerprint acquisition step described in section 3.1 can
be repeated an arbitrary number of times to collect finger-
print information for the same file, or it can be extended to
acquire information for a number of (j, k,m, n) tuples in
one request. The Hash Set Dual–Request Protocol requires
that ν ≤ K for some pre-determined global constant K>0.
That is, processing CAlice will require Bob to search for a
matching file no more than K times.

Then, Alice signs the random bit stream X that she cre-
ated with Bob (described in section 4.2), and sends both
the request CAlice and the signed bit stream DAlice(X) to
Bob. Note that the signed bit stream has no meaning to any
peer in the network other than Bob – to Carol, DAlice(X)
would just appear to be random garbage, and Bob could not
convince her that it was anything else. Having responded
to one request from Alice, Bob refrains from processing
other requests from the same source for a certain amount
of time. This restriction limits the computational impact of
the request protocol on Bob. What is important about Al-
ice’s public key being certified in this context is that she
cannot easily generate a new public-private key pair (effec-
tively changing her identity), and issue another request to
Bob before her time-out period is complete. That is, the use
of the certificate prevents Sleep Deprivation Torture [9], in
which Mallory repeatedly issues expensive requests to Bob
to run his battery dry.

5. Conclusions

We have presented a framework for anonymous file ex-
change in a mobile ad-hoc wireless environment. In the
spirit of delay tolerant applications, we have indicated how



the mobility of the nodes and the ad–hoc nature of the topol-
ogy can be exploited to collect fingerprint information for a
set of desired files and how it can then be used to assem-
ble together the requested files from short–term opportunis-
tic data transfers. The proposed scheme is based on well
known cryptographic component algorithms and methods.
The contribution is mainly in how to tune the anonymous
P2P transfers to fit the context of intermittent connectivity,
low bandwidth, and lacking pre–existing trust relationships.
For example, compared to RASH [10], fingerprint informa-
tion is collected on a per-file basis (as opposed to a per-
segment basis). Though Divalia requires more computa-
tional effort from Bob during the segment acquisition stage,
the benefit is reduced traffic over the anonymous channel.

In a vein similar to how throughput can be improved by
exploiting mobility [2], we believe that mobility can also
increase the degree of confidence in P2P data transfer in-
tegrity. The options are certainly not exhausted with Di-
valia’s fingerprint acquisition scheme. Indeed, one could
imagine other schemes, for example, where a host already
possessing a file pretends that it wishes to download it, in
order to determine the truthfulness of other nodes. There
are numerous other extensions which allow for nodes to re-
fine their trust relationships as the set of neighbouring nodes
continuously changes due to mobility (the trust extensions
described in RASH would also work well with Divalia). In
this sense, Divalia has only scratched the surface.

As far as Divalia is concerned, there are still some open
issues with its design. First, even though Mallory cannot
determine H[j,k] and H[m,n] from listening to Alice’s ini-
tial request for file information and Bob’s reply, she can
still modify the anonymous communication in transit with-
out any consequences. Similarly, Mallory could transmit a
meaningless reply to Alice’s request. Alice’s only defense
is to take any information she receives over the anonymous
channel with a grain of salt, and to re-request file informa-
tion if she believes the information she received was incor-
rect (for example, if she cannot find any peers with a file
matching H[j,k]). For example, one strategy is to re-acquire
the file fingerprint information at different points in time
and space before forming segment acquisition requests.

Another technical issue with the system described in this
paper is that if Bob has downloaded only some of the seg-
ments of a file, he may be unable to transmit those segments
to other nodes who request them. That is, even though he
may have segment i of file F which Alice is requesting, he
may be unable to produce H[m,n] without being in posses-
sion of the entire file (or, at least more of it than he currently
owns). An enhancement of Divalia in a direction that will
circumvent this problem is currently under research. Also,
once Bob is in possession of an entire file and can produce
any requested H[m,n], an index (or other data structure) to
facilitate fast lookups based on H[j,k] becomes necessary.
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