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Abstract—Urban environments are notorious for high levels
of noise and interference, particularly in their unlicensed radio
bands. The interference patterns visible on a given channel
depend on the particular devices competing for the spectrum.
Meanwhile, the modern transceivers incorporated into wireless
sensor network (WSN) nodes have the ability to measure the
background noise/interference and change channels. This com-
bination of capabilities suggests the need to better understand
the noise and interference encountered in urban environments
so that devices can make better decisions to avoid it.

In this paper, we explore the noise and interference patterns
found on 256 frequencies in an urban environment’s 900 MHz
ISM and non-ISM bands. We begin the process by using off-the-
shelf WSN hardware to sample the environment at 5 kHz from
16 locations simultaneously. From these samples, we identify five
prevalent patterns and then hand-classify the 4096 traces of noise
and interference. Finally, we extract a variety of statistics from
the traces and use them in a Bayesian network classifier.

I. INTRODUCTION

Dense and dynamic urban environments present both op-
portunities and challenges for wireless sensor network (WSN)
deployment. The availability of electrical outlets and backbone
wired networks allows for less dependence on batteries and
fewer hops, respectively. On the other hand, the wireless
devices typically operate within one of the industrial, scien-
tific, and medical (ISM) radio bands. These bands are heavily
used, e.g., by cordless phones, WLANs, building automation
networks, and microwave ovens, so devices need to be resilient
to interference.

When a wireless node receives a transmission, the ratio
between its signal strength and any interference plus back-
ground noise (SINR) ultimately determines its fate [1]. In an
environment without motion, received signal strengths tend to
remain relatively stable over time. Background noise is often
assumed to be additive white Gaussian noise (AWGN), and
like received signal strengths, remains relatively stable. The
final variable, interference, is a potentially large uncontrolled
source for variation in the SINR, and yet, it has received
relatively little attention in the literature. Strong interference
can affect all of the nodes in an environment, and channels
operating near their receive sensitivity are especially sensitive
to even small changes in the SINR.

During experiments with a medium-scale indoor WSN [2],
we found that nodes often experienced high packet losses

even at short distances and periods of no congestion. These
difficulties led us to this exploration of their behaviour at that
frequency and many others. Our work adds to the already
healthy scepticism related to the proper modelling in network
simulations that has started in earnest with the paper by Kotz
et al. [3]. However, we target specifically the problem of
characterization based on evident interference patterns.

After sampling the interference and noise on 256 different
frequencies, we aim to (a) highlight the importance of evalu-
ating channels prior to performing real-world experiments and
(b) show that while many channels may be suitable for low-
powered communication, some clearly are not. Recognizing
these poor channels is important because modern transceivers
have the ability to change channels. When nodes detect that
they are using a poor channel, they can make the change to a
better frequency.

We have no illusions about the generality of our results:
we sampled one specific environment, on a particular date,
over a particular period of time. We realize that the same
environment may exhibit different characteristics if sampled
again, and other environments may be completely different.
That said, it is important for researchers to realize that the
combination of noise and interference is rarely straightforward
AWGN.

Our work is relevant to the area of cognitive networking,
and in particular it attempts a high-level characterization
of channels that are potentially occupied by (licensed or
unlicensed) users. In cognitive radio, the characterization is
performed with the intent of determining the (near-term) oc-
cupancy as expressed through the observed noise+interference
combination. Cognitive networking needs such a step before
opportunistically using one or more of those channels. In
fact, rather than producing a binary (occupied/unoccupied)
classification of channels, we characterize channels into five
different classes. Some of the classes, for example those
exhibiting presence of spread spectrum or UWB interferers,
could, depending on the cognitive network scheme, be used at
the same time for narrowband transmissions by the cognitive
network. However, in our study, we do not take a position as
to how the channels will be used, but rather what is a good
(and as exhaustive as possible) characterization of channels
based on their noise+interference time series behaviour.



One should also keep in mind that the ultimate goal of
any WSN performance study is to guide practical deployments
involving tangible hardware with painfully idiosyncratic prop-
erties. The most extreme example of such a property in our
case is the systemic suppression of certain channels separated
by half-multiplies of the crystal frequency driving the RF chip
(seen in Fig. 3). It is clearly impossible to account for all
such “features” in any blanket theoretical model, as it is in
any experimental study whose results one may be tempted
to extrapolate onto unexplored hardware. Nonetheless, the
actual behaviour of real devices is what ultimately matters the
most; thus, we should try to bring as much order as possible
into those necessarily unsystematic, but extremely valuable
from a practical standpoint, observations made by real-life
implementers.

In this paper, we make a number of contributions. We
describe a setup for high-frequency RSSI sampling using off-
the-shelf wireless sensor nodes and sufficient cabling. For
a particular environment, we show the variety of channels
that we encountered and classify them into a few groups. In
many cases, these channels differ greatly from the commonly
assumed AWGN model. In support of these classes, we com-
pute statistics from each trace, use them to train a Bayesian
classifier, and present the results of using that classifier.

II. RELATED WORK

A. The Transitional/Gray Region

Many researchers have reported on a transitional (or gray)
region in the SINR where, over time, a subset of nodes may
fluctuate between successful and failed transmission. Patterns
in the interference are most likely to affect these nodes first,
and for that reason, we review related work on the transitional
region.

Zhao and Govindan [4] quantified the size of the area in
three different environments: an office building, a park, and
a parking lot. They set up 60 motes operating in the 70-
centimetre amateur radio band at 433 MHz in a line topology
and had the node at one end transmit packets at 1 Hz. In
the building and park environments, they noticed surprisingly
large gray areas of almost one-third and one-fifth of the
communication ranges, respectively.

Later experiments by Son, Krishnamachari, and Heide-
mann [5] considered one less variable: hardware variations.
They discovered that for a particular node and level of signal
strength, the gray region is actually quite narrow. Furthermore,
the specific width and location of the gray region depends
on both (a) the transmitter hardware and (b) the transmission
power. The gray region only appeared relatively wide when
many radios were used, and in that case it spanned roughly
6 dB.

More recently, Zamalloa and Krishnamachari [6] ap-
proached the problem from a different perspective – math-
ematically. Although they derived expressions for the location
and extent of the transitional region, their model does not
consider interference. They acknowledge that the noise floor

varies over time, and mention large changes in temperature
and interference as possible causes.

B. Sampling and Observations

From 2007 to 2010, researchers working on closest-fit
pattern matching (CPM) sampled noise in various environ-
ments. In their experiments, they sampled noise at low rates
(1 kHz or less), and they made only informal comments about
interference patterns.

Lee, Cerpa, and Levis [7] used the CC2420 IEEE 802.15.4
transceiver to sample the chip’s RSSI register at 1 kHz. Note
that this transceiver updates its RSSI value at 62.5 kHz by
averaging over the previous eight symbols periods (128 µs).
They stored the retrieved measurements in the device’s flash
memory, which allowed them to record samples for 197 s.
Fifteen of the sixteen IEEE 802.15.4 channels overlap with
IEEE 802.11b, and they sampled noise on overlapping and
non-overlapping channels. They sampled the noise in Wi-Fi
enabled buildings, Wi-Fi enabled outdoor areas, outdoor quiet
areas, and controlled areas. In their samples, they noticed
three key characteristics: (a) the noise traces contained spikes,
sometimes as strong as 40 dBm above the noise floor, (b) many
of the spikes in the noise traces were periodic, and (c) the noise
patterns changed over time. They did not encounter two of the
other characteristics that we observed (Section IV).

Rusak and Levis [8] collected RSSI samples from packet
transmissions in buildings at Cornell and Stanford University.
They used TelosB motes with CC2420 transceivers and trans-
mitted packets at both 4 and 100 Hz between a pair of nodes,
concentrating on modelling the signal strength rather than just
noise.

Most recently, Srinivasan, Dutta, Tavakoli, and Levis [9]
expanded on much of their previous work. They explored
the correlation of noise traces, where six synchronized nodes
sampled RSSI values at 128 Hz. Furthermore, they observed
802.11b interference at 45 dBm impacting their 802.15.4
channel and, as a solution, suggest avoiding channels that
coexist with 802.11b networks to minimize interference and
loss.

III. DATA COLLECTION

To better understand the interference patterns present on
channels in a WSN, we developed software to measure the
conditions in our network. We set up a grid of nodes in the
Smart Condo at the University of Alberta [2]. Within the 80 m2

space, we deployed a four-by-four grid of 16 wireless nodes
with 1.83 m spacing. We elevated each node 28 cm off of
the floor. While running the experiments, we kept the room’s
doors closed and there was no movement within the room.

In the experiments, we used EMSPCC11 wireless nodes
provided by Olsonet Communications [10]. These devices
consist of a TI MSP430F1611 microcontroller and TI CC1100
transceiver. We configured the CC1100 for 38.4 kbit/s using
2-FSK modulation. In terms of software, they run a low-
footprint operating system named PicOS [11] that supports
multithreaded applications.
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Fig. 1. The experiment setup within the Smart Condo. The circles represent
the nodes. The small black boxes represent the 7-port USB hubs. The notebook
computer in the top-left recorded the results.

A PicOS application collects noise measurements by read-
ing an RSSI value from the CC1100’s RSSI register and
writing the 8-bit 2’s complement value to the UART without
converting it to dBm. It performs these actions in a tight
loop that involves the OS scheduler at every iteration, but
since no other threads are running, the scheduler latency is
relatively constant. We verified the periodicity of our sampling
by toggling an LED on every call to the output function and
monitoring the pin with an oscilloscope. With this software,
we can obtain the RSSI at over 5 kHz, while given our settings,
the CC1100 updates the RSSI value at over 12 kHz.

Writing values to the UART necessitates connecting all the
nodes to a computer by wire. The EMSPCC11 provides direct
access to the MSP430’s UART pins at TTL levels, so we
opt to use a TTL RS232 to USB interface cable (FTDI TTL-
232R-3V3). Now with a USB interface, it is easy to connect
all 16 nodes to a single computer using a combination of
USB extension cables and powered 7-port USB hubs (Digitus
DA-70227). In making the connections, we do not exceed
USB’s maximum cable length of 16.4 feet. Fig. 1 shows the
experiment setup on the blueprint for the space. We include
the node numbers in this figure for future reference.

A single application on the PC opens all 16 serial ports
when it starts. Samples arrive at 80 kHz, and the application
stores each sample in a line of 25.6 bytes (average) in a CSV
text file. The application is thus writing the text file at around
2 MB/s.

The whole application is very sensitive to latency. The TTL-
232R-3V3 has a 256-byte receive buffer (about 20 ms of
buffer space), and we initially experienced buffer overruns.
To eliminate them, we take the following steps:

• introduce a large circular buffer of blocks of bytes (64-kb
blocks),

• in the main thread, read the ports and write measurements
to the circular buffer,

• assign this thread real-time priority (in Mac OS X 10.6,
give it 2.5 ms of computation time every 5.0 ms and allow
it to be preempted), and

• in a second thread, write completed buffer blocks to disk.

After taking these steps, the buffers never filled to more than

100 bytes.1 In fact, in the early tests of this modified setup,
the application would read samples from the buffer less than
10 bytes at a time.

The PC-based application produced timestamps for all mea-
surements as they arrived. We adopted this approach to reduce
the data sent over the serial link and to nullify the effect of
node clock drift, which was surprisingly high even over short
periods, When timestamping the data, it interpolates times
using the last time we read a block and the current time as
bounds. Since the readings are sent periodically, we can always
rewrite the timestamps later if they must be perfectly periodic.

Before taking proper measurements, we verified whether the
connection of our motes by wires to a single data collection
point affected their RF communication. Note that there was no
reason to suspect influence, because of the careful isolation of
the RF tract on the EMSPCC11, which is a common practise
in professionally designed RF equipment. By disconnecting
individual nodes and (visually) inspecting their RSSI readings
we were able to ascertain that neither the USB cables alone,
nor their connections to the central hub had a perceptible
impact on the RF channels.

With the described measurement framework in place, we
proceeded to measure the RSSI on each of the node’s 256
channels. Our nodes were configured with a base frequency
of 904 MHz. The channels are spaced 199.9512 kHz apart,
and each channel occupies a bandwidth of 101.5625 kHz.
These settings allow our nodes to listen on frequencies from
904 MHz to 928 MHz (within the ISM band) and 929 MHz
to 954 MHz (outside the ISM band). For each channel, we
collected exactly 175 000 samples for each node for a duration
of less than 35 s. For the whole collection process, the span
was roughly 2.5 h and the final CSV data file consumed
18.38 GB.

IV. CHANNEL CLASSIFICATION
After collecting the 4096 RSSI traces, we began exploring

them by plotting each against time. Through visual inspec-
tion, we identified five general categories for the interference
patterns.

1) The quiet channel is characterized by a low maximum.
2) The quiet-with-spikes channel is similar to (1), but it has

short-duration spikes that give it a higher maximum.
3) The quiet-with-rapid-spikes channel has a higher fre-

quency of spikes than (2).
4) The high-and-level channel exhibits a high and tight level

and has a high minimum.
5) The shifting-mean channel has its RSSI samples dis-

tributed bimodally.
See Fig. 2 for an illustration of each class of channel.

Given the general classes of interference patterns, we hand-
classified the trace for each channel/node combination. The
task of classifying the samples was particularly difficult given
that a single trace might contain overlapping patterns or a

1In the application, we added code to print out the buffered number of bytes
if it ever exceeded 100. In our experiments, this code was never executed; the
maximum buffered bytes may have been far less than 100.
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Fig. 2. The different primary classes of channels that we identified in our
RSSI traces. From top to bottom, the figure shows the samples and density plot
for the (a) quiet channel, (b) quiet-with-spikes channel, (c) quiet-with-rapid-
spikes channel, (d) high-and-level channel, and (e) shifting-mean channel.

pattern at only a weak strength. We did not test the intra-rater
reliability of these hand-classifications, and we would expect
some variance. When more than one characteristic was present
in a trace, we tried to class it as the visually dominant one. For
example, we tended to classify a trace as shifting-mean rather
than quiet-with-spikes and quiet-with-rapid-spikes rather than
shifting-mean. Fig. 3 shows the classifications for the 4096
combinations and Table I summarizes our counts for ISM and
non-ISM bands.

TABLE I
THE NUMBER OF TRACES CLASSIFIED AS EACH TYPE FOR BOTH ISM AND

NON-ISM BANDS.

Classification ISM Non-ISM Total
quiet 155 1614 1769
quiet-with-spikes 1146 179 1325
quiet-with-rapid-spikes 523 25 548
high-level 32 69 101
shifting-mean 80 273 353

We encountered spikes predominantly within the ISM band.
When inspecting some of the spikes, we calculated very short
durations of around 6 ms; we speculate that they result from
one or more frequency-hopping interferer.

Fig. 3 highlights a curious pattern in channels grouped in
the class high-level. The four cases on channels 30, 95, 160,
and 225 are located 65 channels apart. We set up the nodes in
a new environment, added some shielding to them, and again
measured these channels to find no decrease in the strength
of the interference. That was suggestive of a hardware issue
and, indeed, a closer inspection revealed the problem signalled
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Fig. 3. The result of hand-classifying noise traces from 256 channels with
16 nodes per channel. The correspondence between colour and classification
is as follows: (a) red e: quiet, (b) green `: quiet-with-spikes, (c) blue f:
quiet-with-rapid-spikes, (d) yellow c: high-level, and (e) black a: shifting
mean.
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Fig. 4. A sample from ch. 139 (931.793 MHz) at node 6 that shows
particularly strong interference. We attribute these non-ISM noisy samples
to pagers.

in [12] consisting in a systemic attenuation of those channels
whose frequencies fall at 806+ n× 13 MHz (13 MHz is 1/2
of the chip’s crystal frequency), which perfectly agrees with
the observed “anomaly.”

In the non-ISM band, we noticed that channels 126-130 and
138-141 had very powerful shifting-mean signals (e.g., see
Fig. 4 for a node operating on channel 139 at 931.793 MHz).
Using Spectrum Direct at Industry Canada, we searched the
Assignment and Licensing System (ALS) database2 and found
that the closest registered frequency is 931.737500. This
frequency is registered to Telus Communications Inc. for their
900 MHz paging service. For the lower channels, 126 to 130,
we also found that they were registered for paging services.

We also found that the licensed spectrum is relatively quiet
apart from the paging service (accounting for the explained
anomalous behaviour of channels 30 + n× 65).

2See http://www.ic.gc.ca/eic/site/sd-sd.nsf/eng/h 00025.html.



A. BayesNet Classification

After manually classifying the traces, we explored the
feasibility of automating such classification. From each trace,
we extracted the following features: (a) mean, (b) standard
deviation, (c) skew, (d) kurtosis, (e) minimum, (f) maximum,
(g) dip, (h) 99.5 percentile, and (i) 99 percentile. The dip
statistic is used in a test for unimodality [13]. We included
the percentile metrics in an attempt to better identify the quiet-
with-rapid-spikes traces.

Using Weka 3.6.2 [14], we explored using its BayesNet
classifier on the features extracted from the traces. We loaded
a data file prepared in the ARFF format containing the class of
channel and the statistics. On these data, we ran 10-fold cross-
validation with the BayesNet classifier. Overall, it correctly
classified 81.03% of the instances. Table II provides accuracy
statistics by class and Table III shows the confusion matrix.

TABLE II
ACCURACY STATISTICS FOR THE BAYESNET CLASSIFIER WITH 10-FOLD

CROSS-VALIDATION.

TP rate FP rate Precision Recall
quiet 0.876 0.055 0.923 0.876

quiet-with-spikes 0.766 0.080 0.820 0.766
quiet-with-rapid-spikes 0.746 0.076 0.604 0.746

shifting-mean 0.703 0.041 0.620 0.703
high-level 0.960 0.001 0.951 0.960

TABLE III
CONFUSION MATRIX FOR THE BAYESNET CLASSIFICATION.

ABBREVIATIONS AS FOLLOWS: Q: QUIET, QS: QUIET-WITH-SPIKES, QRS:
QUIET-WITH-RAPID-SPIKES, SM: SHIFTING-MEAN, AND HL: HIGH-LEVEL.

Classified as
q qs qrs sm hl

Actual

q 1550 98 54 62 5
qs 113 1015 140 57 0
qrs 6 101 409 32 0
sm 7 24 74 248 0
hl 3 0 0 1 97

The BayesNet classifier obtained the best performance with
the quiet and high-level traces. The classifier had more trouble
on the channels with spikes and the shifting means. All three
of these types can look quite similar depending on the strength
(dBm) of the pattern.

V. CONCLUSION
We deployed a WSN in an indoor urban environment and

set out to sample its noise and interference on 256 channels
ranging from 904 to 954 MHz. By visually inspecting the
collected data, we observed five distinct patterns in the traces;
we then hand-classified each trace as belonging to one of these
types. Subsequently, we explored using a Bayesian network
classifier on statistics extracted from the traces. The classifier
performed reasonably well on all types of traces, exhibiting
(not surprisingly) somewhat better accuracy for the quiet and
high-level classes.

In the future, we will explore classifying channels based
on fewer samples. Given that modern transceivers have the
ability to change channels, it is important that they can assess

channels quickly and accurately to select the best available.
Once such classification can be carried out with a satisfy-
ing accuracy, one can think about organizing the low-level
transmission techniques (physical and MAC layers) around
the input from the classifier. To hint at the flavor of possi-
bilities, consider the trade-off between multiple (redundant)
transmissions, reduction of bit rate, various acknowledgement
techniques, forward error correction, and so on. Many low-
cost RF modules (including the CC1100, for example) make
those options possible; however, to be helpful, the choice must
be driven by the perceived characteristics of real-life channels,
rather than some generic and blanket models whose ability to
instigate constructive decisions in this area is seriously limited.
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