MODELING ATM NETWORKS IN A PARALLEL SIMULATION ENVIRONMENT:
A CASE STUDY

P. Gburzynski T. Ono-Tesfaye S. Ramaswamy
Department of Computing Science
University of Alberta, Edmonton, Canada T6G 2H1

Keywords: Parallel simulation, Time Warp, ATM net-
works, Protocol modeling.

Abstract

This paper describes our experience with implementing
an Asynchronous Transfer Mode (ATM) network simu-
lator in the high-level sequential programming language
SMURPH [Dobosiewicz and Gburzynski 93], and then
porting it to SimKit—a parallel simulation tool offer-
ing a C++ interface to a shared-memory implementa-
tion of the well-known Time Warp [Jefferson 85] con-
cept. The work was undertaken as part of the TeleSim
project, which aims to build a set of multi-purpose high-
fidelity ATM simulation tools for execution in sequential
and parallel environments.

1 Introduction

ATM is a connection-oriented packet-based switching
technology designed for high-speed networks. Designing
a simulator for ATM networks is not a well-defined task,
because ATM is a networking concept rather than a sin-
gle networking solution. Owing to the lack of a complete
specification, our network model is made up of two dis-
tinct components with different requirements: a model
of the generic ATM network hardware, i.e., the hard-
ware components like buffers, links and switch fabrics,
and a model of ATM signaling, which constitutes a well-
established part of the ATM standard. [Arlit et. al. 94]
have developed a number of realistic traffic sources and
sinks that interface with our model. The simulator cur-
rently features

support, for arbitrary switch dimensions and net-
work topologies.

— 3 single-stage and 3 multi-stage switch fabrics. Be-
cause switches with different switch fabrics imple-
ment the same signaling protocol, they can be freely
interconnected.
separate buffering of cells on CBR, VBR, ABR and
UBR connections.

support for point-to-point switched virtual channels
(SVCs) and permanent switched virtual channels
(PVCs).

— usage parameter control (UPC) at all switch inputs.
support for switch-to-switch virtual paths (VPs).
extensive switch-level statistics collection.
support for the explicit forward congestion indica-
tion (EFCI) bit in the cell header.

— The routing table used at switches to route connec-
tions can be either computed by a built-in function
(based on the topology) or supplied by the user.
Signaling messages may be several cells in length.
Segmentation and reassembly of these messages may
have a significant effect on the processing time for
a signaling message. Hence, the segmentation and
reassembly of signaling messages is modeled. All
signaling messages are assumed to be of the same
size.

— Signaling messages for a switch are placed in an in-
finite queue and serviced FIFO. This is useful when
the user is interested in the connection setup delay,
for example.

The signaling protocol does not take into account
link or node failures. It does not have the ability to
set up point-to-multipoint connections.

2 Model Overview

Time Warp simulations require that the computation be
broken up into logical processes (LPs) which commu-
nicate via time-stamped messages. LPs always execute
whichever incoming message has the lowest time stamp,
disregarding any need for synchronization. The local vir-
tual time (LVT) of the process is set to the time stamp
of the message being handled. Processes regularly save
their local state in a saved state vector. A causality er-
ror occurs when a message with a lower time stamp than
the LVT (a straggler) is received. This forces the affected
process to roll back in virtual time and restore a state
saved before the time stamp of the straggler.

We initially implemented a prototype network model
in SMURPH. SMURPH is an object-oriented sequential

simulation language that provides high-level structures
like stations, links and ports. The SimKit C++ inter-
face to Time Warp provides two simple base classes: an
LP class and an event (message) class. The interface
is sufficiently general to be identical in sequential and
Time Warp-based parallel environments. The mapping
of SMURPH objects to SimKit LPs and non-LP objects
was an important issue in the process of porting the
network model. Design trade-offs were needed to main-
tain as much of the parallelization potential as possible,
while at the same time keeping sequential overheads low:
fragmenting the simulation into too many LPs would in-
crease the sequential overhead, whereas having too few
LPs would reduce the parallelization potential (consider
the extreme case where the entire simulation is executed
by a single LP). The peculiar nature of Time Warp mem-
ory also had to be considered: all data that can change
during the simulation has to be part of an LP’s state.

Primary objectives in the hardware model design were
extensibility and both good sequential and parallel per-
formance. The number of connections in a typical simu-
lation run is small compared to the number of cell trans-
missions, however, and performance was therefore not
the main goal in designing the ATM signaling model.
Instead, we focussed on a reasonably detailed implemen-
tation of the ATM Forum signaling specifications.

Broadly, our model consists of two main kinds of ob-
jects: LP objects and switch objects. Every switch object
creates and manages a number of LP objects. In addi-
tion to LPs, switches have a number of constant read-
only data fields, for instance the switch’s LP interconnect
structure. Statistics are variable data and are therefore
collected by LPs.

The model is made up of links, traffic sources/sinks
(TSSs), end nodes and switches. Links are bidirectional
and connect switches with switches and switches with
end nodes. Each end node is connected to a switch by
a single link; and every TSS is associated with at least
one end node (one way to understand this is to view the
end node as a workstation with an ATM card and the
TSS as the application software running on it).

The cell transfer phase is the main simulation phase
during which connections are set up/cleared, cells are
sent /received, and statistics are collected. The result
of a connection setup is that the input port switching
tables along the call route are updated and that the net-
work layer of every node along the route keeps track of
resources allocated for the call.

There are two basic connection types in ATM-TN:
permanent virtual circuits (PVCs) and switched virtual
circuits (SVCs). To establish an SVC, a traffic source
must, request a call setup by sending a message to the
network layer of its end node. A traffic source can send

cells on an SVC only if the connection setup request
is successful. Resources for PVCs are allocated during
model initialization. A traffic source can send cells on a
PVC at any time.

3 Switch Hardware Model

The LP classes are input LPs, output LPs, fabric LPs
and signaling LPs. ATM cells are SimKit events sent
from LP to LP.

The input process makes the switching decisions.
When a cell arrives at an input LP, it looks up the cell’s
VPI/VCI values in a switching table, changes the cell’s
VPI/VCI fields if necessary, and tags the cell with the
output port index and the connection’s quality of service
(QoS) class. If the cell does not conform to the connec-
tion’s traffic descriptors, its loss priority bit (CLP) is set.
Depending on the cell’s tag and the switch’s (read-only)
interconnect structure, the cell is sent either directly to
the output LP, to a fabric LP (for example, a shared
buffer), or to a signaling LP (if the cell arrived on a sig-
naling channel). The output LPs buffer cells if necessary
and then send them to the input LP on the other end of
their link.

S>>

P
@ Input LP
Output LP

---> Cell movement

Figure 1: ‘Perfect’ Switch

While the use of input LPs decreases performance,
it adds flexibility to the model. In particular, it al-
lows switches to operate completely independent of each
other: a switch need not know anything about the in-
ternal structure of the switches it is connected to. Note
that in this model, signaling cells are treated just like
any other cell by the input, output and fabric LPs. This
means that to experiment with different signaling pro-
tocols, the researcher only needs to modify the signaling
LPs.

All switch models use the same generic buffer archi-
tecture. Each buffer consists of four FIFO queues, one
FIFO for each of the four traffic classes CBR, VBR, ABR,

and UBR. Each FIFO has three parameters that can be
specified independently: the size, the CLP=1-threshold
and the EFCI-threshold. The CLP=1-threshold speci-
fies the FIFO occupancy level beyond which cells with
their CLP bit set (i.e., low-priority cells) are dropped.
The EFCI-threshold specifies the occupancy level be-
yond which the EFCI bit of buffered cells is set. The
order in which the four FIFOs of one buffer are served
can be set to either round-robin or to exhaustive priority
in the order CBR, VBR, ABR, UBR.

A brief description of each switch class follows.
Perfect Switch. This is a simple single-stage output-
buffered switch with per-port buffer memory (fig. 1).
The fabric is perfect in the sense that every cell arriving
at an input port makes it to an output buffer without
getting dropped and in constant time. Various realiza-
tions are possible for small switch dimensions (say < 16);
many of the switches currently on the market fit in this
category.

fffff (-4 5D~
. Shared
bufer LP
= Control
(e)G

(1) Input LP
Output LP

---> Cell movement

Figure 2: Shared Buffer Switch

Shared Buffer Switch. This is a single-stage switch
with a shared buffer fabric (fig. 2). The shared buffer
is modeled by a single LP. Like all our switch models,
the switch also has buffers at the output ports. Every
cell arriving at an input port is first sent to the shared
buffer and then to its final destination (an output port
or the control module). Cells are buffered in the shared
buffer if they can’t be transferred immediately. The rate
at which cells can be transferred from the shared buffer
to a specific output port is given by the switch’s internal
transmission rate; our model assumes that cells can be
transferred to several different output ports in parallel.
Crossbar Switch with buffers at the crosspoints (fig. 3,
[Ahmadi and Denzel 89]). Every cell arriving at an in-
put port is first sent to the buffer at the crosspoint of
the input port and the cell’s destination output port.
Crosspoint buffers associated with one output link are
managed by one crossbar LP. Cells are buffered at the
crosspoint buffer if they can’t be transferred immedi-
ately. The rate at which cells can be transferred from

Output LP

= Cell movement

IEINEINER
] > H Crosspoint
HEIREINE: bufferLP
o] % |
2| Coawe
N = () inputLp
~

y

- &(ﬁﬂﬂ
-|@-E

Figure 3: Crossbar Buffer Switch

crosspoint buffers to a specific output port is given by
the switch’s internal transmission rate; the crosspoint
buffers leading to the same output port are served in
round-robin fashion. Because there are dedicated out-
put lines for each output port, our model assumes that
cells can be transferred to several different output ports
in parallel.

Multi-stage switches. Because simple switch fabric
architectures are only scalable within limits, most larger
switches contain banyan fabrics made up of stages of
switching elements. We implemented multi-stage ver-
sions of the switch models by re-using the LP objects
of the single-stage switches and only changing the LP
interconnect structure. We chose an asynchronous self-
routing, perfect shuffle delta interconnect structure for
the multistage switches. Delta fabrics are banyan fab-
rics with the attractive property that the bits of the out-
put port index (the tag) are used for internal routing
[Patel 81]. In these switches, internal blocking and cell
loss can be avoided or reduced by placing buffers in the
switching elements, or by increasing the internal trans-
mission rates relative to the external rates.

Fig. 4 shows a multi-stage switch with output buffered
switching elements. The output buffer LPs of switch-
ing elements are identical to the output LPs at the
switch output ports. A multi-stage shared buffer switch
class and a multi-stage crossbar switch class were imple-
mented similarly: the switching elements use the same
shared buffer LPs and crossbar LPs as the respective
single-stage switches.

4 SVC Signaling

4.1 Signaling Layers

Figure 5 shows the layered structure recommended by
the ATM Forum [ATM Forum 93] for signaling. We
term the layer associated with the processing of signaling

(output buffered)

paol
(1) Input LP
Output LP

---> Cell movement

**** S EE
H| Switchi
fffff T

Figure 4: Multi-stage Switch

Network

Control | Messages

Figure 5: ATM Forum UNI Signaling Model

messages the Network layer because it performs many of
the functions of Layer 3 of the OSI model. The Service-
Specific Connection-Oriented Protocol (SSCOP) ensures
reliable delivery of signaling messages to the signaling
peer on the other end of the link. The Service-Specific
Coordination Function (SSCF) maps the services pro-
vided by the SSCOP into services required by the Net-
work Layer. The Segmentation and Reassembly (SAR)
layer converts signaling messages into a cell stream and
vice-versa. The ATM layer deals with switching and
scheduling of cells.

In order to reduce the complexity due to additional
layers, we combine the Network Layer, the SSCOP and
SSCF. This means that each connection has the responsi-
bility of ensuring that its signaling messages are reliably
delivered (using timers and retransmissions). Since the
simulator does not model node or link failure, we only
need to ensure reliability in the face of message loss due
to buffer overflow. However, the stream of cells to and
from the ATM layer is unchanged as a result of this sim-
plification. This simplification has the result of introduc-
ing signaling messages that are not specified in the ATM
Forum signaling protocol. Also, the signaling protocol
used at the User-Network Interface (UNI) is the same
as that used at the Network-Network Interface (NNI).
Figures 6, 7 and 8 explain the signaling protocol used
at the the UNI and between ATM switches.

[=2] DEN

CRACK lwxii oo) ==

CRACK | ___—==="7"7 " TTm=—___

MEALL PROC./
CR ACK

CONNECT/ | ___—=="7"
CONNECT /

————————— CONNECT
CONSECT/ T | ACK./
—————————————— CONNECT CA ACK
e . ! ACK.
~~~~~~ -1 CONNECT CA ACK
CONNECT ACK./
ACK./ CA ACK
CA ACK
! |
! |
I |
! |
Q.93b Standard
UNI UNI

Model Protocol

Figure 6: Connection Accepted

=] DEN

CRACK  lwg=" - 1 U=

CR ACK

MEALL PROC./
ACK

CR RELEAS
COMPLETE/
RELEASE DA ___
RELEASE |COMPLETE/ | ___—-
COMPLETE/ DA -1 __
RELEASE DA [ e o
compPLETE/]  ___--TT DA ACK
DA le—=""7" T TTe——
———————— DA ACK ™
““““““““ DA ACK
DA ACK ~ ™
| |
| |
| |
I I
I I
| |
I I
| |
| |
Q.93b Standard |
UNI UNI

Model Protocol

Figure 7: Connection Refused

4.2 Modeling a Layer

Each of the layers in the signaling model is implemented
as a SimKit logical process (LP).

4.2.1 Modeling the Busy Period of an LP

In order to model the busy period of an LP when a mes-
sage is received by it, a busy flag is associated with the
LP. If the flag is set when a message is received, the
message is placed in a queue.

When an LP begins processing a message, it sets the
busy flag and sends an event to itself. This event will
be delivered after a time corresponding to the duration



(=N 8] [2] 0 [8] PN

\\\\\\\\\ ~~~RELEASE/DR
=T
COMPLETE/ 1+=="" ~=~« IRELEASE/DR
DA RELEASE -1~

COMPLETE/ |, _-- =~
DA RELEASE _

COMPLETE/ =~~
DA RELEASE

COMPLETE/
DA

Q.93b Standard

|
|
|
|
I
}
UNI Model Protocol UNI

Figure 8: Disconnection Request

of the busy period. Until it is received, any arriving
messages will find the LP busy and will be placed in
a queue. At the end of the busy period, the busy flag
is reset and the message at the head of the queue is
processed as before.

4.3 Modeling the Network layer

The network layer maintains state per connection. Sig-
naling messages and timer messages are the events that
move a connection from one state to another. Thus,
when an event is received, the connection to which it
refers is found. Given the state of the connection and
the event, a function is called to process the event. This
makes it easy to for the user to create additional signal-
ing messages with very little knowledge of the working
of the model.

4.3.1 Connection Entries

The Network layer at every switch has a table of connec-
tion entries that store the information relating to each
connection. Each connection has a connection entry with
an index in the connection table and a connection id.

Once a connection is torn down, the free entry in
the connection table may be given to another connec-
tion. However, pending messages for the connection just
torn down may be delivered to the new connection. To
avoid this, the messages between NL peers specify con-
nection identifiers and not connection indexes. The NL
at each switch generates its own stream of monotonically
increasing connection IDs.

A mapping between connection id and connection in-
dex is maintained, so that once the connection id of a
message at the local NL is known, the connection entry

to which it should be delivered can be found. A map-
ping is also maintained between the connection id of the
connection at the peer NL and the corresponding local
connection id.

4.3.2 Reducing the Complexity of the Signaling

Protocol

LHS Connection RS Connection
Entry Entry

RHSLink

LHSLink

LHS Switch Curent Switch RHS Switch

Connection Connection

Request Request

Figure 9: Sibling Connection Entries

With reference to figure 9, consider a switch that has
just received a connection request (CR) from another
switch (Left Hand Side or LHS Node) on a link or VP
(LHS Link). A connection entry is created for this con-
nection at the switch. Since it is not the destination end
node, it looks at each of the outgoing links and VPs that
leads to the destination end node and chooses one with
sufficient bandwidth (Right Hand Side or RHS Link).
The node on the other side of the RHS Link is the RHS
Node.

The number of states for the connection entry would
be large if the same connection entry had to manage
packets arriving on both the RHS and LHS links. There-
fore, the connection entry (LHS entry) created when the
CR arrives on the LHS link makes a duplicate of itself
(RHS entry). The RHS entry manages the RHS Link
and has its own connection id and state information.

The connection id of one connection entry is known
to the other. So they can communicate with each other.
These connection entries are called siblings in distinc-
tion to peers. The latter are communicating connection
entries at neighboring nodes.

This scheme has the effect of simplifying the signaling
protocol. Moreover, as a result of the symmetry, the
protocol used between the LHS node and the LHS entry
is the same as that between the RHS entry and the RHS
node, further simplifying the protocol.



4.3.3 Making the Network layer Reliable

The Network layer is made reliable by using timers and
retransmitting signaling messages on expiration of the
timer. However, the timer value must be chosen so that
the generated cell stream is as close as possible to that
when the SSCOP is present.

ATM Forum

Outgoing
Call Proc.
Call Present

Model
Outgoing
Call Proc.

Retransmission Cnt = Max

Call Present

Timeout’

‘Timeout‘ = Timeout / Max ‘

Figure 10: Making a Protocol Reliable

Figure 10 shows how the state diagram for an unre-
liable protocol can be modified to make it reliable. It
also suggests a simple way of deriving the timer values
in the modified protocol based on the timeout period in
the original protocol and a retransmission count. The
higher the retransmission count, the more reliable the
protocol will be in the face of message loss. However,
there is a lower bound on the setting of the timer; if it
is less than twice the link delay, signaling messages will
be retransmitted unnecessarily.

Whenever a connection request (CR), disconnection

request (DR), connection accept (CA) or Disconnection
accept (DA) packet is transmitted a timer is started.
A given connection can have only one pending timeout
event. Starting a timer consists of sending a timer event
to itself (the Network LP) with the id of the connection
which must receive the timeout event and placing an en-
try in the timer queue. This entry consists of a mapping
between the connection id and the time that the time-
out event should be received. The reason for the timer
queue is to make it possible to kill the timer. It is not
possible to delete a SimKit event. So when the time-
out occurs, the timer queue is searched to find an entry
with the same connection id as in the timeout event. If
such an entry is found, the timeout message is processed.
However, if the timer had been killed by deleting the en-
try in the timer queue, the timeout message will not be
processed.

4.3.4 Connection Admission Control (CAC)

CAC determines whether a call can be admitted locally
by the switch based on its current configuration of avail-
able resources.

As a first step, the bandwidth required by the con-
nection is calculated using the traffic descriptor and
required QoS (this may be different in the forward—
source-to-destination—and reverse directions). The func-
tion that performs this calculation can be modified at
will by the researcher. At present, this function exists
in the form of a stub. Indeed, much ATM research is fo-
cussed on a way of satisfactorily deriving the bandwidth
requirements of arbitrary traffic patterns on the basis of
a supplied descriptor.

The next step is to check that bandwidth is available
in the reverse direction on the link or VP that the con-
nection arrived on. If it is not, the connection is rejected.

The switch then tries to find an outgoing link lead-
ing to the destination with sufficient forward bandwidth.
The list of outgoing links for the destination switch is ob-
tained using the local routing table. If the bandwidth is
available, forward and reverse bandwidths are reserved.
Otherwise, the connection is rejected.

References

[Ahmadi and Denzel 89] H. AuMADI AND W. E. DEN-
zZEL. A Survey of Modern High-Performance
Switching Technigques. IEEE JSAC, vol. 7 no. 7
(1989), pp. 1091-1103.

[Arlit et. al. 94] M. ArvuiTT, Y. CHEN, R. GURSKI,
AND C. WILLIAMSON. ATM-TN Traffic Mod-

elling. TeleSim Project Internal Report, August
1994, 18 pages.

[Dobosiewicz and Gburzynski 93] W. Do-
BOSIEWICZ AND P. GBURZYNSKI. SMURPH:
An Object Oriented Simulator for Communi-
cation Networks and Protocols. MASCOTS’93,
San Diego, CA (1993), pp. 351-352.

[ATM Forum 93] THE ATM ForuM ATM User-
network Interface Specification, Version 3.0.
Prentice Hall, New Jersey, September 1993.

[Jefferson 85] D. R. JEFFERSON. Virtual Time. ACM
Transactions on Programming Languages and
Systems, vol. 7 no. 3 (1985), pp. 404-425.

[Patel 81] J. H. PATEL. Performance of Processor-
Memory Interconmections for Multiprocessors.

IEEE Transactions on Computers, vol. 30 no. 10
(1981), pp. 771-780.



